
Proactive Serverless Function Resource Management
Erika Hunhoff

CU Boulder
Shazal Irshad
CU Boulder

Vijay Thurimella
Thrive, Inc

Ali Tariq
CU Boulder

Eric Rozner
CU Boulder

Abstract
This paper introduces a new primitive to serverless lan-
guage runtimes called freshen. With freshen, developers
or providers specify functionality to perform before a given
function executes. This proactive technique allows for over-
heads associated with serverless functions to be mitigated at
execution time, which improves function responsiveness. We
show various predictive opportunities exist to run freshen
within reasonable time windows. A high-level design and im-
plementation are described, along with preliminary results
to show the potential benefits of our scheme.

CCS Concepts: •Networks→Cloud computing; •Com-
puter systems organization → Cloud computing.

Keywords: Serverless Computing, Resource Management
ACM Reference Format:
Erika Hunhoff, Shazal Irshad, Vijay Thurimella, Ali Tariq, and Eric
Rozner. 2020. Proactive Serverless Function Resource Management.
In Workshop on Serverless Computing (WoSC’20), December 7–11,
2020, Delft, Netherlands. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3429880.3430102

1 Introduction
Serverless computing is an emerging paradigm in which
cloud providers seamlessly scale developer-provided func-
tions as demands change. Although seemingly simple, server-
less functions have been shown to support a wide variety of
workloads, from chat bots, video processing, machine learn-
ing, HCI, to even general compute. As serverless ecosystems
mature, functions will be integrated into a set of larger and
larger microservices and will also be relied upon to directly
interface with users. As such, the execution latency of server-
less functions becomes an important consideration.

However, the simplicity of today’s serverless deployments
may increase execution times. Consider a simple function, _1,
which downloads a machine learning model from a server,
analyzes an input image, and performs additional processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
WoSC’20, December 7–11, 2020, Delft, Netherlands
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8204-5/20/12. . . $15.00
https://doi.org/10.1145/3429880.3430102

before writing a result to a datastore. Without care, over-
heads exist. The function must first create a connection to
the server hosting the model and then download the model
from the server. This behavior could happen anew for subse-
quent instantiations of _1, even if running sequentially in the
same warmed container. When writing the result, another
connection must be established before the data is sent. Again,
this overhead could reoccur for successive invocations of
_1. These per-invocation overheads (e.g., establishing con-
nections, refetching the model, incurring TCP slow start,
etc.) quickly add up, which is problematic because many
functions have short execution times.
To deal with such issues, developers can utilize runtime

reuse. In runtime reuse variables can be runtime-scoped in-
side the language runtime executing within the container
the serverless function runs in.1 Runtime-scoped variables
can be accessed across subsequent serverless function in-
stantiations within a given runtime and container. Revisiting
our example, network connections can be reused within a
runtime when defined as a runtime-scoped variable to avoid
per-instantiation connection overheads.

We argue runtime reuse is insufficient to overcome many
of the redundant overheads described earlier. Even with run-
time reuse, fetched data could be out-of-date, connections
may revert their congestion windows to small initial values
or even time out, or application-level state could be stale from
the last invocation. To combat these issues, we propose a new
primitive called freshen, which can be proactively invoked
by the serverless infrastructure. A freshen hook is imple-
mented in the runtime, allowing developers or providers to
establish or warm connections, proactively fetch data, or
otherwise perform actions to reduce overheads when the
serverless function runs. The freshen hook is designed to be
run before its corresponding function is instantiated, and we
contend this is possible because there aremany opportunities
to predict a function’s instantiation before it is invoked.

This paper provides motivation and background in Section
2, a preliminary design in Section 3, and potential benefits of
freshen in Section 4. Related Work is detailed in Section 5.
Finally, Section 6 contains discussion and conclusion.

2 Background and Motivation
This section provides background on runtime reuse and high-
lights scenarios where inefficiencies may remain. Then, we
motivate ways to predict function instantiations.

1We use “container” to generally refer to VMs or containers

https://doi.org/10.1145/3429880.3430102
https://doi.org/10.1145/3429880.3430102
https://doi.org/10.1145/3429880.3430102

WoSC’20, December 7–11, 2020, Delft, Netherlands Erika Hunhoff, Shazal Irshad, Vijay Thurimella, Ali Tariq, and Eric Rozner

Serverless runtime reuse While all providers allow run-
time reuse, here we explain how an open-source platform,
OpenWhisk, enables reuse. OpenWhisk runs functionswithin
Docker containers, listening as a daemon on port 8080. After
the container is initialized, the init hook starts the language
runtime within the container and also loads the actual func-
tion code. When the run hook is invoked, the function is
scheduled to run. Thus, the persistent runtime instantiated
during init can be thought of as a program that listens for
the run hook, executes the function, and returns the result.

Without runtime reuse, variables are scoped for use within
a single invocation, termed invocation-scoped. In contrast,
runtime-scoped variables can be reused across function in-
stantiations in a given runtime. Common use cases for runtime-
scoped variables are persisting network connections (so con-
nection quotas are not exhausted) and fetching frequently-
accessed data during the first function invocation and then
storing in the runtime for the container’s lifetime.

Figure 1. Opportunities for
freshenwithin a function chain

Figure 2. Orchestration apps
have more functions in chains

Runtime reuse inefficiencies While runtime reuse can
increase application efficiency, numerous issues may arise.
First, the runtime may not be initialized, such as when a
cold start occurs. Studies have shown inefficient container
reuse across function invocations, which increases cold start
frequency [15]. Other works indicate some serverless in-
frastructures disallow container sharing between functions,
which can increase cold starts when container resources are
limited [16]. Second, there may be cases when the runtime
is initialized, but data held within the runtime is stale. For
example, an object stored within the runtime may need to
be re-retrieved because a newer version is available. Net-
work connections may have timed out or have reset their
TCP state (e.g., congestion window, round trip times, etc).
Linux congestion control reduces the congestion window
(CWND) on inactive connections. Last, approaches to re-
duce connection (re)establishment overheads may not apply.
Linux tcp_no_metrics_save allows metrics like RTT and
ssthresh to be cached between TCP connections to the same
destination, but does not apply to important parameters such
as CWND. TCP Fast Open requires sender/receiver support
and limits data sent in initial handshakes to small amounts.
As a result, even with runtime reuse several inefficiencies
remain that can be addressed with proactive calls to freshen.

Regaining efficiency via prediction To alleviate the above
concerns, we introduce a freshen hook into the runtime,
which can be called before a function is run. The freshen
hook allows arbitrary execution of code intended to speed
up function execution times. freshen can warm pre-existing
network connections, ensure locally-cached items are up-to-
date, or even proactively retrieve an object. freshen is most
effective when functions are predicted, and this is possible
in several cases. First, in function chains (as in Figure 1) ex-
plicit knowledge of a function chain could predict impending
function invocations within the chain. Function chains are
often explicitly provided (as in Orchestration frameworks
like AWS Step Functions) or can be derived via tracing or
service mesh techniques [9]. To better understand prediction
opportunities, we briefly study function chains in Orches-
tration frameworks. Figure 2 shows a CDF of the number of
functions within a single serverless application for Orches-
tration applications on Azure (data from [12]), compared to
the number of functions within a single application over all
applications. Orchestration frameworks specifically support
function chains, and hence applications utilizing Orchestra-
tion frameworks typically consist of more functions: 8 func-
tions in the median Orchestration case versus 2 functions
in the median case of all. With a median function runtime
of ~700ms [12], prediction opportunities could be as high as
~5.6s in the case of a linear chain (e.g., Figure 1).

Trigger Service Delay (s)
Step Functions 0.064
Direct (Boto3) 0.060
SNS Pub/Sub 0.253
S3 bucket 1.282

Table 1. Trigger overhead

Additionally, functions
within chains may be
triggered by other ser-
vices, such as storage,
pub/sub, or direct invo-
cations. Table 1 shows
the median delay, over
20k runs, between in-
voking a function via
the listed service and the actual subsequent triggered func-
tion start time in AWS. Cold starts are carefully avoided,
and the methodology in [15] is used to obtain overheads by
measuring timestamps just before the function trigger and at
the start of the triggered-function. The table shows latencies
range from 60ms to 1.28s, allowing time to call and execute
freshen for the next function within the chain.

3 Design and Implementation
This section addresses when freshen could run (Section
3.1), what freshen could do (Section 3.2), and how freshen
could be implemented (Section 3.3). Throughout, we refer to
an example serverless function _ (Pseudocode 1) to illustrate
how freshen could warm a connection and prefetch data.
_ fetches data (DataGet) over a connection, performs some
calculation on the fetched data and _’s parameters, writes an
output value to an external resource (DataPut), and returns
whether the write was successful.

Proactive Serverless Function Resource Management WoSC’20, December 7–11, 2020, Delft, Netherlands

Pseudocode 1 Sample Serverless Function _

1: Runtime Constants: 𝐶𝑅𝐸𝐷𝑆, 𝐼𝐷1, 𝐼𝐷2
2: procedure _(𝑎𝑟𝑔𝑠)
3: 𝑑𝑎𝑡𝑎 B DataGet(𝐶𝑅𝐸𝐷𝑆, 𝐼𝐷1)
4: ...

5: 𝑟𝑒𝑠𝑢𝑙𝑡 B ...

6: ...

7: 𝑟𝑒𝑡 B DataPut(𝐶𝑅𝐸𝐷𝑆, 𝐼𝐷2, 𝑟𝑒𝑠𝑢𝑙𝑡)
8: return 𝑟𝑒𝑡

Figure 3. Predicted and unanticipated timing of freshen

3.1 When to freshen
The serverless framework would attempt to run freshen be-
fore the serverless function (best case) or simultaneously
(worst case). freshen could cause function execution to
block until it is complete, or run synchronously with the
function in a separate thread, as shown in Figure 3. Simul-
taneous execution could lead to race conditions and code
complexity, but allows most aggressive resource warming;
the feasibility of this approach is a subject of future work.

3.2 Opportunities to freshen
freshen could perform a variety of actions, including TCP
connection establishment, TCP connection warming, state
maintenance of other connection-oriented protocols, and
proactive data fetching.

Connection establishment and checks If a serverless
function uses a resource with an underlying TCP connection,
the function developer can either establish a runtime-scoped
connection to take advantage of runtime reuse and create
an ephemeral, invocation-scoped connection. In both cases,
freshen could help reduce function latency. If the connec-
tion is runtime-scoped, freshenwould send a TCP keepalive
to ascertain connection liveness; if the connection is not alive,
freshen could reestablish the connection. If the connection
is invocation-scoped, freshen could proactively establish
the connection before the function attempts to create it.

freshen could only perform connection establishment for
connections with constant arguments (e.g., constant IP and
port). We posit this is often the case as serverless functions
typically interact with known services such as storage.

Connection warming freshen could also take steps to
warm TCP connections used by the serverless function such
as setting the CWND. This could be facilitated via a new
system call, warm_cwnd, which would determine an appro-
priate value of CWND based on current network conditions
and anticipated workloads. The CWND can be estimated via
techniques like packet pair probing to determine the current
bandwidth [7] or analyzing the CWND of recent similar TCP
connections to the same destination. Repetitive invocations
can be used to anticipate workload characteristics, which
could guide the warming function on whether warming is ap-
propriate. The warm_cwnd function can set initial congestion
windows or alter congestion windows on longer-running,
inactive connections. Since warm_cwnd is implemented as a
system call, final determination of actual CWND values, as
well as permissions on whether such values can be altered,
resides within the provider who is running the underlying
host infrastructure.

Other connection-oriented protocols freshen can es-
tablish and warm other connection-oriented protocols and
protocols that run on top of TCP such as TLS as long as the
credentials are constant. However, for TLS establishment and
other user-space protocols, the serverless provider would
require some knowledge of the libraries used in order to cre-
ate provider-generated freshen hooks for those resources.
Developers who write their own freshen hooks, as detailed
in Section 3.3, would have access to such knowledge.

Proactive data fetching Consider the _ in Pseudocode 1:
if the data fetched with DataGet is retrieved using constant
credentials and resource identifiers, it is possible to prefetch
the data before _ is invoked.

Prefetching leads to the concept of a freshen-maintained
cache of prefetched data. If the function is invoked frequently
within the same runtime and accesses a read-only data re-
source, it may only be necessary to fetch the data once every
𝑛 seconds instead of every time the function is run, reducing
network traffic. The time-to-live (TTL) of values within the
freshen cache could be set by a default value, by freshen
configuration values specified by the function developer,
or by modifying the DataGet library to configure the TTL
value on a per-resource level. In the more general case, as-
sociated timestamps or version numbers could be used to
determine the freshness of items in the runtime freshen
cache, and data could be updated the next time freshen or
the serverless function is called.

3.3 Implementation
In the simplest implementation of freshen, the function de-
veloper would write freshen for each serverless function
that requires optimization. This would provide the most op-
portunity for customized optimization. freshen may also
improve code organization by encapsulating and standard-
izing maintenance of dynamic resources. As an interesting

WoSC’20, December 7–11, 2020, Delft, Netherlands Erika Hunhoff, Shazal Irshad, Vijay Thurimella, Ali Tariq, and Eric Rozner

alternative to developers writing freshen, freshen code
could be inferred by the serverless framework itself for com-
mon resources and for popular serverless languages (e.g.,
JavaScript, Python).
Code generation would be complex but here we rely on

several observations about serverless functions and frame-
works to reduce the scope of the problem:

• If freshen were unable to be inferred, the serverless
framework could continue unmodified with no major
performance loss. Hence, failure to infer is not fatal.

• Source code is available for static analysis for such
tasks as identification of read-only data fetched using
constant parameters.

• Function code is run repeatedly, so dynamic tracing
of functions to identify commonly accessed resources
is possible (similar to the tracing used in [6]).

• The latency cost of the network operations freshen
seeks to optimize are much slower than CPU speeds so
some overhead for freshen inference is permissible.

• Implementing inference only for libraries used to ac-
cess other cloud services offered by the serverless
provider has the potential to lower latency for a ma-
jority of functions without having to infer freshen
behavior for unknown resources.

One option for implementing freshen for scripting lan-
guages is to use added runtime-scoped state and dynamically-
inserted wrapper functions. The purpose of the runtime-
scoped state is to track and coordinate freshen resources
between the freshen call and the actual function invoca-
tion. The purpose of the dynamically-inserted wrappers is
to intercept access to freshened resources. We will illustrate
a simplified example of what an inferred freshen could re-
semble for the _ in Pseudocode 1.

The runtime-scoped state would minimally be a collection
of ordered freshen resources. A freshen resource is any object
or resource that the freshen code may interact with, such
as a socket or a data object. In our example, the freshen
resources are kept in an ordered runtime-scoped list called
𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒 . In Pseudocode 1, the DataGet operation which
freshen can fetch or prefetch, will be assigned index 0 since
it is the first resource accessed by _. DataPut, which freshen
can warm, is assigned index 1. Each entry in fr_state could
contain a variety of metadata, such as a state (e.g., running,
finished, etc.), a result (e.g., the prefetched data), a TTL for
the result, and a timestamp recording the last time that entry
was freshened. For simplicity, we only consider state and
result in the following pseudocode.
Pseudocode 2 illustrates an example freshen function

for _. As mentioned, DataGet is assigned to index 0 and
DataPut is assigned to index 1. The states running and fin-
ished surround the DataPut and DataGet calls of freshen,
and are used to coordinate the execution of freshen with
the execution of _. Pseudocode 3 is the annotated version

Pseudocode 2 Freshen Function for _
1: Runtime State: 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒
2: procedure 𝐹𝑟𝑒𝑠ℎ𝑒𝑛
3: 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒 [0] B 𝑟𝑢𝑛𝑛𝑖𝑛𝑔

4: 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒 [0] .𝑟𝑒𝑠𝑢𝑙𝑡 B DataGet(𝐶𝑅𝐸𝐷𝑆 , 𝐼𝐷1)
5: 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒 [0] B 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑

6: 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒 [1] B 𝑟𝑢𝑛𝑛𝑖𝑛𝑔

7: DataPut.warm(𝐶𝑅𝐸𝐷𝑆)
8: 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒 [1] B 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑

9: return

of Pseudocode 1. The function wrappers appear at lines 3
and 7. The function wrappers used are FrFetch (for freshen
fetch) and FrWarm (for freshen warm).

Pseudocode 3 Annotated Sample Serverless Function
1: Runtime Constants: 𝐶𝑅𝐸𝐷𝑆, 𝐼𝐷1, 𝐼𝐷2
2: procedure _(𝑎𝑟𝑔𝑠)
3: 𝑑𝑎𝑡𝑎 B FrFetch(0, DataGet(𝐶𝑅𝐸𝐷𝑆 , 𝐼𝐷1))
4: ...

5: 𝑟𝑒𝑠𝑢𝑙𝑡 B ...

6: ...

7: 𝑟𝑒𝑡 B FrWarm(1, DataPut(𝐶𝑅𝐸𝐷𝑆, 𝐼𝐷2, 𝑟𝑒𝑠𝑢𝑙𝑡))

8: return 𝑟𝑒𝑡

Psuedocode 4 and 5 are the implementations of those
wrappers. The main function of each wrapper is to syn-
chronize freshen actions with _’s use of that resource. If
the resource has already been freshened, the wrapper re-
turns either the prefetched data (line 4 in Pseudocode 4) or
nothing where freshen’s only job is to warm the resource
(line 4 in Pseudocode 5). In Pseudocode 5 it is assumed that
there is already some knowledge of how to warm DataPut
(e.g., the call to DataPut.warm() in line 7 of Pseudocode 2).
If freshen has started freshening the resource (indicated
by the state running), both wrapper functions wait for the
freshen thread to finish before returning (line 6 in Pseu-
docode 4 and line 6 in Pseudocode 5). Finally, if freshen
either did not run or is executing slower than _, the wrapper
can perform the freshen action itself (line 10 in Pseudocode 4
and line 10 in Pseudocode 5). Not included for brevity in
Pseudocode 2 are the checks to see if the resources have
already been freshened by wrapper functions invoked by _.

Billing and accounting Since freshen runs to benefit
the serverless application, the serverless application owner
should pay for it. However, as outlined above, freshenwould
ideally be triggered based on predictions by the serverless
framework. What happens if the platformmispredicts a func-
tion call? Confidence in prediction could be used to dictate
if freshen is called or not. Metrics kept inside a container,
or communicated to the serverless global scheduling entity,

Proactive Serverless Function Resource Management WoSC’20, December 7–11, 2020, Delft, Netherlands

Pseudocode 4 Freshen Fetch Function
1: Runtime List: 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒
2: procedure 𝐹𝑟𝐹𝑒𝑡𝑐ℎ(𝑖𝑑, 𝑐𝑜𝑑𝑒)
3: if fr_state[𝑖𝑑] == 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 then
4: return 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒 [𝑖𝑑] .𝑟𝑒𝑠𝑢𝑙𝑡
5: else if fr_state[𝑖𝑑] == 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 then
6: FrWait(𝑖𝑑)
7: return 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒 [𝑖𝑑] .𝑟𝑒𝑠𝑢𝑙𝑡
8: else
9: fr_state[𝑖𝑑] = 𝑟𝑢𝑛𝑛𝑖𝑛𝑔

10: fr_state[𝑖𝑑].result = Execute(𝑐𝑜𝑑𝑒)
11: fr_state[𝑖𝑑] = 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑

12: return 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒 [𝑖𝑑] .𝑟𝑒𝑠𝑢𝑙𝑡

Pseudocode 5 Freshen Warm Function
1: Runtime List: 𝑓 𝑟_𝑠𝑡𝑎𝑡𝑒
2: procedure 𝐹𝑟𝑊𝑎𝑟𝑚(𝑖𝑑, 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒)
3: if fr_state[𝑖𝑑] == 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 then
4: return
5: else if fr_state[𝑖𝑑] == 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 then
6: FrWait(𝑖𝑑)
7: return
8: else
9: fr_state[𝑖𝑑] = 𝑟𝑢𝑛𝑛𝑖𝑛𝑔

10: 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒.𝑤𝑎𝑟𝑚()
11: fr_state[𝑖𝑑] = 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑

12: return

could be used to stop freshen from running if predictions
have been too inaccurate. Service categories chosen by the
application developer could also control freshen behavior.
Aggressive freshen invocation would be appropriate for
latency-sensitive applications; freshen could be disabled for
latency-insensitive functions. Last, we note providers may be
incentivized to offer freshen because it provides a method
to monetize warmed containers that are otherwise sitting
idle.

Preventing abuse and misconfiguration A danger if the
application developer were allowed to implement their own
freshen is that the application developer would try to im-
plement their entire function in freshen. This is undesir-
able and unprofitable for the developer for several reasons:
freshen has no access to function arguments, the applica-
tion developer is paying for the compute and network re-
sources regardless, and the application would have to handle
spurious invocations (mispredictions) gracefully.

4 Evaluation
This section explores the advantages a freshen hook could
provide. First, the benefits of file caching are evaluated. Then,
improvements from connection warming are illustrated.

Figure 4. File retrieval over-
heads to save with freshen

File caching evalua-
tion Figure 4 demon-
strates the potential ben-
efits of proactive file
retrieval (file caching).
In this benchmark, an
OpenWhisk serverless
function queries a server
for a file of one of six dif-
ferent sizes (x-axis) over
a TCP connection. The
time measured (y-axis,
log scale) is the duration
from connection to when the file has been completely re-
ceived. The file server is located in one of three locations:
local on-host (green), edge on-site (purple), and remote off-
site (blue). On-site resides on the same 10 Gbps LAN and
off-site averages 50ms away. The experiment was conducted
using CloudLab [4] with 20 iterations. The results show how
much execution time freshen could save a serverless func-
tion if freshen is proactively run. Maximum benefits range
from 11-622ms.

Figure 5. Warming to cloud Figure 6.Warming to edge

Warmed connection comparison To demonstrate the
benefits of freshen warming a TCP connection, we run an
OpenWhisk serverless function on CloudLab which sends
different file sizes to a server. We measure the time of a client
initiating a file transfer to the response from the server indi-
cating completion. To understand the potential benefits, we
emulate a warmed TCP connection by sending a large file
before sending our desired file size. The server is located at
two locations, on the same cloud or at the edge (~50ms away).
The experiment was conducted over 20 iterations. The cloud
case is presented in Figure 5 and the edge case is presented in
Figure 6. With smaller file sizes, the performance of warmed
and non-warmed is similar. As file sizes grow, the benefit
of warmed connection ranges from 51.22% to 71.94%. The
edge performance is better because network delay, and not
system overheads, dominate totals.

5 Related Work
Much research reduces cold start costs. These works are
partitioned into two categories: those that are compatible

WoSC’20, December 7–11, 2020, Delft, Netherlands Erika Hunhoff, Shazal Irshad, Vijay Thurimella, Ali Tariq, and Eric Rozner

with existing serverless architectures and those that pro-
pose significant changes to serverless architecture. Of those
compatible with existing serverless architectures, techniques
include cold start avoidance (runtime reuse), light-weight iso-
lation mechanisms [11], intelligent host scheduling [14], and
caching of resources ranging from libraries [11] to virtual
Ethernet infrastructure [10]. Our work has a different focus,
optimizing warm starts, but is compatible with these tech-
niques. Catalyzer [3] snapshots static application state; our
work addresses dynamic state and is complementary. AWS
Lambda Extensions address static and dynamic resources, but
do not provide opportunities for prediction [17]. Works that
focus on avoiding cold starts by predicting function execu-
tion [5, 12, 14] motivate our design because freshen would
bemost effective when function invocations are predicted. Of
works that propose fundamental changes to serverless archi-
tecture such as running more than one function within the
same isolation context [1] or adding distributed application
state and/or message passing abilities between serverless
functions [1, 13], the motivation for freshen remains but
implementation strategies would vary.

Last, Containerless [6] avoids the cost of strong isolation
mechanisms by transforming JavaScript serverless functions
into Rust via dynamic tracing. Their dynamic tracing design,
as well as analysis of the resulting traces, could help inform
how freshen could be inferred by providers.

6 Discussion and Conclusion

Discussion There exists many opportunities for future
work. First, the system should be fully deployed and thor-
oughly evaluated. Quantifying how freshen affects variabil-
ity in application behavior would be an important compo-
nent of this evaluation. Prediction success must be addition-
ally quantified, especially in the case of non-deterministic
function chains. In addition, the framework must be ana-
lyzed for misuse and resource limiting [8] and hardened
as necessary. Impact on developer burden, or the extent to
which providers can automatically generate freshen must
also be further studied. Integration with microservices or
other primitives [2] is interesting future work. Finally, inte-
grating freshen into serverless architectures that provide
different isolation scopes is an additional area for future
study (e.g., Azure offers chain-level isolation).

Conclusion This paper proposes a new primitive to server-
less language runtimes called freshen. With freshen, devel-
opers or service providers specify functionality to complete
before a given function executes. This proactive framework
allows for overheads associated with serverless functions
to be mitigated at execution time, which improves function
responsiveness. We argue predictive opportunities exist to
enable freshen to be run with ample time. A high-level
design and implementation are presented, along with pre-
liminary results to show potential benefits of the scheme.

References
[1] Istemi Ekin Akkus et al. SAND: Towards high-performance serverless

computing. In 2018 USENIX Annual Technical Conference (USENIX ATC
18), pages 923–935, Boston, MA, July 2018. USENIX Association.

[2] Z. Al-Ali, S. Goodarzy, E. Hunter, S. Ha, R. Han, E. Keller, and E. Rozner.
Making serverless computing more serverless. In 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD), pages 456–459,
July 2018.

[3] Dong Du et al. Catalyzer: Sub-millisecond startup for serverless com-
puting with initialization-less booting. In Proceedings of the Twenty-
Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page 467–481, New
York, NY, USA, 2020. Association for Computing Machinery.

[4] Dmitry Duplyakin et al. The design and operation of CloudLab. In
Proceedings of the USENIX Annual Technical Conference (ATC), pages
1–14, July 2019.

[5] Jashwant Raj Gunasekaran, Prashanth Thinakaran, Nachiappan Chi-
dambaram, Mahmut T. Kandemir, and Chita R. Das. Fifer: Tackling
underutilization in the serverless era. arXiv, 2020.

[6] Emily Herbert and Arjun Guha. A language-based serverless function
accelerator. arXiv, 2019.

[7] Srinivasan Keshav. Packet-pair flow control. IEEE/ACM transactions
on Networking, pages 1–45, 1995.

[8] Junaid Khalid, Eric Rozner, Wesley Felter, Cong Xu, Karthick Rajamani,
Alexandre Ferreira, and Aditya Akella. Iron: Isolating network-based
CPU in container environments. In 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18), pages 313–328,
Renton, WA, 2018. USENIX Association.

[9] Jonathan Mace and Rodrigo Fonseca. Universal context propagation
for distributed system instrumentation. In Proceedings of the Thirteenth
EuroSys Conference, EuroSys ’18, pages 8:1–8:18, New York, NY, USA,
2018. ACM.

[10] Anup Mohan et al. Agile cold starts for scalable serverless. In 11th
USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 19),
Renton, WA, July 2019. USENIX Association.

[11] Edward Oakes et al. SOCK: Rapid task provisioning with serverless-
optimized containers. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 57–70, Boston, MA, July 2018. USENIX Asso-
ciation.

[12] Mohammad Shahrad et al. Serverless in the wild: Characterizing and
optimizing the serverless workload at a large cloud provider. In 2020
USENIX Annual Technical Conference (USENIX ATC 20), pages 205–218.
USENIX Association, July 2020.

[13] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. Cloudburst: Stateful functions-as-a-service. Proceedings of
the VLDB Endowment, 13(12):2438–2452, Aug 2020.

[14] Amoghvarsha Suresh and Anshul Gandhi. Fnsched: An efficient sched-
uler for serverless functions. In Proceedings of the 5th International
Workshop on Serverless Computing, WOSC ’19, page 19–24, New York,
NY, USA, 2019. Association for Computing Machinery.

[15] Ali Tariq, Austin Pahl, Sharat Nimmagadda, Eric Rozner, and Siddharth
Lanka. Sequoia: Enabling quality-of-service in serverless computing.
In Proceedings of the Annual Symposium on Cloud Computing (SoCC),
2020.

[16] Liang Wang et al. Peeking behind the curtains of serverless platforms.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages
133–146, Boston, MA, 2018. USENIX Association.

[17] Julian Wood. Building extensions for aws lambda – in preview. 2020.

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Design and Implementation
	3.1 When to freshen
	3.2 Opportunities to freshen
	3.3 Implementation

	4 Evaluation
	5 Related Work
	6 Discussion and Conclusion
	References

