
Demo: Telekinetic Thumb Summons
Out-of-reach Touch Interface Beneath Your Thumbtip
Inseok Hwang

IBM
Austin, TX, USA

ihwang@us.ibm.com

Eric Rozner
University of Colorado Boulder

Boulder, CO, USA
eric.rozner@colorado.edu

Chungkuk Yoo
IBM

Austin, TX, USA
ckyoo@ibm.com

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting systems and tools; Touch screens; Gestural input; User
interface programming.

ACM Reference Format:
Inseok Hwang, Eric Rozner, and Chungkuk Yoo. 2019. Demo: Telekinetic
Thumb Summons Out-of-reach Touch Interface Beneath Your Thumbtip. In
The 17th Annual International Conference on Mobile Systems, Applications,
and Services (MobiSys ’19), June 17–21, 2019, Seoul, Republic of Korea. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3307334.3328571

1 INTRODUCTION
As personal interactive devices become more ingrained into our
daily lives, it becomes more important to understand how seamless
interaction with those devices can be fostered. A typical mecha-
nism to interface with a personal device is via a touch screen, in
which users use their fingertip or stylus to scroll, type, select, or
otherwise control device usage. Touch-based techniques, however,
can become restrictive or inconvenient under a variety of scenarios.
For example, personal devices such as phones or tablets are contin-
uously increasing in size, making one-handed interaction difficult
because one cannot easily hold the phone and touch the screen
(with the thumb) at the same time with one hand. Therefore, in this
demo, we present a new technique to interact with personal devices
in which the screen and touch screen interactions can adapt to a
user’s grip or current touch constraints.

Specifically, we design a technique called Telekinetic Thumb
that allows a user to modify the location or content of the screen
in a seamless manner. In a Telekinetic Thumb-enabled application,
Telekinetic Thumbmonitors the user’s above-screen finger gestures
in the background while the user is using the application as usual.
Upon detecting a pre-determined telekinetic gesture, Telekinetic
Thumb moves the whole application screen underneath the user’s
finger, preferably in the way that the UI element the user intended
to touch is relocated precisely beneath the finger. Moving the out-of-
reach UI element below the finger allows for seamless one-handed
control over devices of arbitrary screen size without re-gripping
the device. Telekinetic Thumb takes advantage of pretouch technol-
ogy, in which a user’s hovering finger can be detected above the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MobiSys ’19, June 17–21, 2019, Seoul, Republic of Korea
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6661-8/19/06.
https://doi.org/10.1145/3307334.3328571

Figure 1: (a) Some icons are out of the thumb’s reach. (b) User
performs a pulling gesture above the screen. (c) The entire
application screen relocates closer to the thumb location. (d)
Clicking an icon on the relocated screen is applied to the
original application.

screen (as found in Samsung Airview or prior work [5]). By utiliz-
ing pretouch to define and detect the gesture instead of on-screen
interaction, our technique is unlikely to interfere with preexisting
application or OS behavior.

Figure 1 demonstrates a user interacting with a sample appli-
cation with Telekinetic Thumb enabled. The user is holding the
phone in a single-handed grip, which would be a very typical way
to hold the phone while the user is moving. Figure 1(a) shows that
the user is trying to click an icon at the far top-left corner, but it
is out of the thumb’s reach. Instead of changing the grip or using
another hand, in Figure 1(b), the user performs a quick “pulling”
gesture–a wiggle in the air above the screen in this case. At this
moment, Telekinetic Thumb intelligently relocates the entire appli-
cation screen based on the magnitude and direction of the gesture
vector [2–4] as shown in Figure 1(c). Now the target icon that the
user intended to reach is right beneath the user’s thumb. Figure 1(d)
shows that, upon clicking this relocated icon, the input has been
applied to the original application.

We highlight that Telekinetic Thumb is not just a new form of
mobile interactivity, but backed by a thoughtful system that makes
Telekinetic Thumb highly generalizable to most mobile applications
and friendly to the application developers. Below we detail our

https://doi.org/10.1145/3307334.3328571
https://doi.org/10.1145/3307334.3328571


Figure 2: Input event flow inside TelekineticActivity.

implementation strategies, followed by a demonstration plan and a
discussion on future works.

2 SYSTEM DETAILS
We implemented a prototype of Telekinetic Thumb as a library on
Android 6.0.1 platform and a Samsung Galaxy S5 smartphone.

Our key philosophy in implementing Telekinetic Thumb was to
maximize the generalizability and friendliness to the application
developers. Recognizing finger gestures and altering the foreground
user interface could be implemented in multiple different ways, but
it would be of diminishing value if it requires significant changes
to an existing application’s code base to incorporate Telekinetic
Thumb feature in their applications.

In this light, we devised an implementation strategy asking the
application developers to change only a single line of code per activ-
ity of their applications. Specifically, the key features of Telekinetic
Thumb are encapsulatedwithin a class named TelekineticActivity
that extends the Activity class of Android SDK. Every Android
application with foreground user interfaces consists of activities,
which are essentially application-specific derivations of the Activity
class. Thus, incorporating Telekinetic Thumb features into an exist-
ing application’s code base is as simple as substituting the base class
of Activitywith TelekineticActivity that an application’s cus-
tom activity inherited from. This is no more than adding one more
layer of inheritance between the base Activity class and an appli-
cation’s custom activity class.

The detailed operations of TelekineticActivity are shown in
Figure 2. Upon initialization, TelekineticActivity intercepts all
incoming user input events by the Activity.dispatchTouchEvent()
method and has a classifier that determines whether these events
are a pulling gesture or not. If not a pulling gesture, these events
are dispatched back to the application and consumed along the
normal view hierarchy. If a pulling gesture, TelekineticActivity
creates a Hallucination, which is a new View floating on top
of the application showing a screenshot of the application’s cur-
rent content view. Then, subsequent user input events are dis-
patched exclusively to the Hallucination, so that the user may
drag the Hallucination to a more convenient location, and/or
touch a fake UI element shown on the Hallucination. To deliver
this touch event to the right location on the application’s activity,
TelekineticActivity creates a clone of this event, reconfigures

the event coordinates by reverting the relocation amounts, removes
the floating Hallucination, and injects it to the screen via Java
Reflection. Now the application’s activity takes over the event and
the application-specific processing continues.

3 DEMONSTRATION PLAN
We demonstrate Telekinetic Thumb on a commodity smartphone
with an exemplary application (see Figure 1). While running the
application, multiple buttons are evenly located on the screen. A
user is requested to touch one of them that are located outside
of the thumb’s coverage of his/her hand which holds the phone.
Without Telekinetic Thumb, the user needs another hand to touch
the target or changes the grip. However, Telekinetic Thumb enables
the user to seamlessly touch the button without using another hand
or changing the grip. It recognizes the user’s intention to touch the
target using the pretouch gesture to reach the target and then brings
the target button underneath the thumb. In our demonstration, we
use the commodity smartphone’s pretouch feature, AirView, for
pretouch gesture sensing. Future designs may use other pretouch
features enabled by self-capacitance screen support [1] or enable
pretouch through prior art like SymmetriSense [5] that enables
the pretouch feature on smartphones without additional hardware
support.

4 CONCLUSION
Telekinetic Thumb provides a seamless way for a device screen
to adapt to a user’s grip or finger without interfering with touch
screen behavior. We believe this is a powerful primitive that will
enable much future work. For example, we are actively researching
techniques that learn user intents in order to relocate portions of
the screen under a finger in a more accurate and effective manner.
Intelligent pretouch techniques can be used to increase accessi-
bility by tracking the trajectory of a finger before a touch or by
allowing for more flexible usage patterns. Additionally, intelligent
prefetch techniques can optimize system performance by preload-
ing application data or behavior associated with an imminent touch
event.

REFERENCES
[1] K. Hinckley, S. Heo, M. Pahud, C. Holz, H. Benko, A. Sellen, R. Banks, K. O’Hara,

G. Smyth, and W. Buxton. Pre-touch sensing for mobile interaction. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems, pages 2869–
2881. ACM, 2016.

[2] I. Hwang, J. Mukundan, E. J. Rozner, and C. Yoo. Displaying virtual target window
on mobile device based on directional gesture, Aug. 7 2018. US Patent 10042550.

[3] I. Hwang, J. Mukundan, E. J. Rozner, and C. Yoo. Displaying virtual target window
on mobile device based on user intent, Oct. 2 2018. US Patent 10091344.

[4] H. Xia, R. Jota, B. McCanny, Z. Yu, C. Forlines, K. Singh, and D. Wigdor. Zero-
latency tapping: Using hover information to predict touch locations and eliminate
touchdown latency. In Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, UIST ’14, pages 205–214, New York, NY, USA,
2014. ACM.

[5] C. Yoo, I. Hwang, E. Rozner, Y. Gu, and R. F. Dickerson. Symmetrisense: Enabling
near-surface interactivity on glossy surfaces using a single commodity smartphone.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems,
pages 5126–5137. ACM, 2016.


	1 Introduction
	2 System Details
	3 Demonstration Plan
	4 Conclusion
	References

