
NAPman: Network-Assisted Power Management
for WiFi Devices

Eric Rozner
∗

Univ. of Texas at Austin
Austin, TX 78712, USA

erozner@cs.utexas.edu

Vishnu Navda
Microsoft Research India
Bangalore 560080, India

navda@microsoft.com

Ramachandran Ramjee
Microsoft Research India
Bangalore 560080, India

ramjee@microsoft.com

Shravan Rayanchu
∗

Univ. of Wisconsin-Madison
Madison, WI 53706, USA
shravan@cs.wisc.edu

ABSTRACT

WiFi radios in smart-phones consume a significant amount of power
when active. The 802.11 standard allows these devices to save
power through an energy-conserving Power Save Mode (PSM).
However, depending on the PSM implementation strategies used
by the clients/Access Points (APs), we find competing background

traffic results in one or more of the following negative consequences:
a significant increase, up to 300%, in a client’s energy consump-
tion, a decrease in wireless network capacity due to unnecessary
retransmissions, and unfairness.

In this paper, we propose NAPman: Network-Assisted Power
Management for WiFi devices that addresses the above issues. NAP-
man leverages AP virtualization and a new energy-aware fair schedul-
ing algorithm to minimize client energy consumption and unnec-
essary retransmissions, while ensuring fairness among competing
traffic. NAPman is incrementally deployable via software updates
to the AP and does not require any changes to the 802.11 proto-
col or the mobile clients. Our prototype implementation improves
the energy savings on a smart-phone by up to 70% under varied
settings of background traffic, while ensuring fairness.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication; C.4 [Performance

of Systems]: [Design studies]

General Terms

Algorithms, Design, Experimentation, Measurement, Performance

∗The author was an intern at Microsoft Research India during the
course of this work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18,2010, San Francisco, California, USA
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

Keywords

Wireless Local Area Networks (WLANs), Access Points (APs),
Smart-Phones, Power Save Mode (PSM), Scheduling, 802.11

1. INTRODUCTION
Wireless communication imposes a significant energy cost on

mobile smart-phones. For example, the base energy consumption
of the HTC Tilt 8900 series phone ranges between 155-475mW,
depending on the intensity of the backlight. In comparison, the
WiFi radio consumes over 1000mW while transmitting. Thus, op-
timizing WiFi power consumption is essential for maximizing the
battery life of mobile smart-phones.

WiFi radios support power saving mechanisms by implementing
multiple modes of operation with different power and performance
characteristics. For example, the Tilt’s WiFi radio’s active or Con-
stantly Awake Mode (CAM) draws high power (1120mW) and de-
livers low latency, while the radio in sleep or Power Save Mode
(PSM) consumes little power (72mW) at the cost of increased la-
tency.

IEEE 802.11 static and adaptive PSM mechanisms and related
research literature [2, 16, 17, 19, 27] include a number of tech-
niques for leveraging PSM in order to save energy (Section 2). In
these approaches, the 802.11 Access Point (AP) supports PSM by
1) buffering incoming packets for WiFi clients in PSM, 2) indicat-
ing the presence of buffered packets via fields in beacon messages,
and 3) delivering the buffered packets after the client notifies the
AP it’s ready to receive one or more packets. This allows the WiFi
radio to spend most of the time in low power PSM, waking up to
high power CAM only in order to receive its intended packets.

However, depending on the PSM implementation strategies used
by the APs and the clients, we find through controlled experiments
that competing background traffic results in one or more of the fol-
lowing negative consequences: a significant increase in the client’s
energy consumption, a decrease in wireless network capacity due
to unnecessary retransmissions, and unfairness (Section 4). Fur-
thermore, our network trace analysis indicates that such situations
are likely quite common during peak usage.

In this paper, we present NAPman, a Network-Assisted Power
Management solution that minimizes WiFi energy consumption for
mobile devices, even in the presence of competing traffic. NAPman
implements a new energy-aware fair scheduling algorithm at the
AP that minimizes WiFi radio wakeup time and eliminates unnec-
essary retransmissions in the presence of competing traffic. Further,
NAPman leverages AP virtualization in a novel manner in order to

isolate PSM clients from each other. Finally, NAPman is incremen-
tally deployable since it requires only software updates to the AP
— no changes are needed to IEEE 802.11 Standards or the WiFi
devices/smart-phones.

In order to minimize energy consumption in WiFi devices, NAP-
man solves two key challenges: isolation of PSM clients from com-
peting a) CAM traffic and b) other PSM traffic. Let us first con-
sider the problem of competing CAM traffic. Through controlled
experiments, we found different commercial APs implement differ-
ent scheduling strategies when a PSM client wakes up and notifies
its AP. Many implementations simply perform normal scheduling

that enqueues all buffered packets of a PSM client to the tail of
the transmit queue. This increases the time PSM clients remain in
high power CAM, wasting energy, while packets that were ahead
in the queue are being transmitted. To deal with this issue, dif-
ferent phones implement different PSM strategies. For example,
phones such as the iPhone 3GS use adaptive PSM with aggres-
sive timeout values of 20− 25ms. When these clients encounter
APs that use normal scheduling, the net effect is the client sleeps
quickly while its PSM packets in the transmit queue end up being
retransmitted multiple times. When these “losses” are coupled with
rate adaptation, they result in significant waste of network capacity
(Section 4.2). Other commercial APs implement a high priority so-
lution for PSM clients, whereby they simply enqueue the buffered
PSM packets to a higher priority queue. While this approach helps
save energy when one PSM client is competing with CAM clients,
we show such a simplistic approach can result in significant unfair-
ness to other CAM clients (Section 4.3).

The NAPman energy-aware fair scheduler aims to deliver energy
savings without unfairness. A simple fairness policy is to deliver
packets based on the order of arrival, in a first-come-first-served
(FCFS) manner. However, FCFS policy turns out to be non-work
conserving, as packets destined to PSM clients cannot be delivered
until the client wakes up. The NAPman scheduler enforces a work-
conserving FCFS policy where the FCFS constraint is applied only
to packets of clients that are awake at any given time. In NAPman,
the AP advertises the presence of buffered packets for the PSM
client in the upcoming beacon only if high priority scheduling of at
least one buffered packet of the PSM client does not ‘skip-ahead” of
any packet that has been waiting longer in the transmit queue. Un-
like AP implementations today, the scheduler continues to maintain
a queue of buffered packets for adaptive PSM clients and manages
their packet delivery carefully. These mechanisms allow both static
and adaptive PSM clients to quickly go back to sleep, saving en-
ergy. Interestingly, we find the NAPman scheduler not only saves
energy, but also reduces latency compared to normal scheduling
since adding PSM packets to the tail of the queue tends to be unfair
to PSM clients.

While the fair scheduling approach helps isolate PSM from CAM
traffic, the presence of multiple PSM clients associated with a sin-
gle AP is still problematic since the PSM clients may need to stay
awake while other PSM clients are being served. In this case, both
normal and high priority scheduling result in increased client en-
ergy consumption. Instead, NAPman relies on a novel solution that
leverages virtualization. The NAPman AP advertises several virtual
APs through beacons that are staggered in time. The PSM clients
are then made to associate to the appropriate virtual AP, thereby
isolating PSM clients from each other.

We have implemented the NAPman scheduling and virtualiza-
tion mechanisms in the MadWifi driver (Section 6). Through ex-
tensive experiments under a variety of traffic conditions (Section 8),
we show that NAPman delivers energy savings similar to or better

than the high priority solution, avoids unnecessary retransmissions,
and enforces fairness for both PSM and CAM clients.

Finally, for completeness, we design an extension to NAPman
that is able to take advantage of simple changes on the clients in
order to provide further energy and latency benefits (Section 9).

In summary, the contributions of the paper are as follows:

• Through controlled experiments and wireless network trace
analysis, we show that current AP and client PSM implemen-
tations can negatively impact energy consumption, network
capacity, and/or fairness in the presence of competing traffic.

• We present the design and implementation of NAPman, an
AP-based incrementally deployable solution that utilizes a
new energy-aware fair scheduling algorithm and leverages
virtualization to minimize energy consumption and unnec-
essary retransmissions for static/adaptive PSM clients while
maintaining fairness.

• Using extensive experiments, we show that NAPman is able
to deliver significant energy savings of up to 70% compared
to current AP implementations for various network traffic
workloads.

2. BACKGROUND AND RELATED WORK
We start with a brief background of the power saving mecha-

nisms available in the WiFi standard and then discuss related re-
search proposals.

2.1 Background
WiFi radios typically support multiple modes of operation, with

varying power consumption in each mode. As mentioned earlier,
most WiFi devices utilize at least two power modes: a high-power
Constantly Awake Mode (CAM) with best performance and an
energy-conserving Power Save Mode (PSM), where the radio peri-
odically wakes up to receive data.

In order to take advantage of low power PSM, a static PSM ap-
proach was originally standardized [16]. The AP buffers packets
for clients in PSM and indicates, through the Traffic Indication
Map (TIM) fields in the beacon, the presence of buffered packets
for clients. The client device wakes up for beacons and if the de-
vice’s corresponding TIM field is set, it sends a separate PS-POLL
message to receive each buffered packet. A MORE bit in the data
frame indicates if more packets are buffered at the AP, helping the
client decide when to stop sending PS-POLL messages.

While the static PSM approach allows the device to save power
by only waking up when packets are outstanding at the AP, the la-
tency involved in receiving packets via PS-POLL has been found
to be high for interactive applications such as web browsing [19].
Therefore, many WiFi devices today also implement a technique
known as adaptive PSM [19], where the device switches between
PSM and CAM based on some heuristics (e.g. TIM bit set, recep-
tion of a threshold number of packets or lack of network activity
for a pre-defined duration). The device notifies the AP of its tran-
sitioning to PSM or CAM by sending NULL data frames with the
power management bit set to 1 or 0, respectively.

The adaptive PSM approach allows the device to be in CAM
while the user is browsing, and thus interactive performance of
adaptive PSM is as good as CAM. However, since the device re-
mains in CAM for an idle timeout period after every PSM to CAM
transition, for many background applications with intermittent net-
work activity, PSM adaptive can be more expensive in terms of
energy consumption than PSM static.

The NAPman approach is complementary to both the static and

adaptive PSM approaches since it minimizes the time the device
needs to stay in high power CAM by isolating it from competing
traffic. Depending on the values used as part of heuristic-based trig-
gers, the energy savings of NAPman will vary for adaptive PSM.

Finally, in order to enable power savings while supporting QoS
sensitive applications such as VoIP, the Unscheduled Automatic
Power Save Delivery (U-APSD) is defined by the IEEE 802.11e
standard [17]. In this approach, whenever a device sends a frame
to the AP (actual data or a NULL trigger frame), the AP imme-
diately sends back buffered frames scheduled as high priority and
in a burst, using the 802.11e TXOP mechanism. In a typical VoIP
application where a device can anticipate receiving periodic frames
(e.g., every 20ms), the U-APSD approach results in no added la-
tency while still allowing the device to sleep between frames.

2.2 Related Work
There has been a significant amount of research effort devoted

to power savings for WiFi radios. We classify these efforts into
four broad categorizes: sleep optimization, impact of background
traffic on PSM, network support for energy saving and use of side-
channel information, and describe them below while placing our
contributions in context.

2.2.1 Sleep Optimization

A lot of work has focused on improving the heuristics in adap-
tive PSM [2, 19, 27]. The authors in [19] and [27] design adaptive
PSM techniques, motivated for applications such as web browsing,
that provide bounded delay while minimizing energy. In [2], appli-
cation characteristics are identified using hints, e.g. background
versus foreground traffic, and these hints are used to automati-
cally switch between WiFi PSM and CAM in order to minimize
energy consumption without sacrificing performance. Another ap-
proach [6], specifically targeted towards streaming media, powers
down or powers up the WiFi interface when the application play-
out buffer is full or almost empty, respectively, thereby saving en-
ergy without impacting application performance.

In [26], the authors present an adaptive U-APSD approach that
extends the 802.11e-based U-APSD to applications such as web
browsing or file download. The device tries to predict when buffered
packets may be available at the AP and sends NULL trigger frames
to retrieve the packets. This approach can result in the device trans-
mitting unnecessary NULL trigger frames and experiencing asso-
ciated energy wastage. Furthermore, the use of bursty high priority
transmissions for applications with large amounts of data such as
browsing or file download can lead to unfairness or starvation, an
issue not considered in [26].

In [7], the authors propose a technique called forced idling that
puts the radio in a low power idling state, as an alternative to sleep
mode, to avoid wasting energy due to overhearing background com-
munications. The approach relies on overhearing RTS/CTS frames
for identifying the time duration to idle. However, since most WiFi
deployments turn off RTS/CTS due to its high overhead [32], the
practicality of this approach is limited.

In [23], the authors propose micro power management (µPM), a
client-based solution that allows a WiFi radio to sleep for very short
intervals, such as a few microseconds, which can be used to sleep
even between two MAC frames. µPM uses prediction to exploit
short idle intervals and does not need any special support from the
AP, since it relies on 802.11 retransmissions to recover from any
mispredictions. NAPman is focused on fair and energy-efficient
scheduling at the AP that isolates client’s traffic from each other
and is thus complementary to µPM.

2.2.2 Impact of Background Traffic

In Scheduled PSM [13, 15], it is observed that background PSM
unicast and multicast traffic can result in energy drain on static PSM
clients. The authors refer to competing PSM flows as background
traffic relative to a selected PSM client [14], whereas we generalize
the notion of background traffic to include other CAM clients as-
sociated to an AP. Scheduled PSM overlays a TDMA-like structure
over 802.11 whereby the beacon period is divided into time slices

and each PSM client’s packets are delivered only in its advertised
time slice. This is achieved by changing the TIM field in the 802.11
standard to include new slicing control and slicing map fields that
indicate the number and offset of the time slices in the beacon in-
terval. At the beginning of each time slice, the AP takes control
of the channel by using either RTS/CTS or Self-CTS, and sched-
ules traffic for the appropriate PSM client during that interval. The
authors demonstrate that their modifications result in energy sav-
ings through simulation using varying rates of UDP traffic to PSM
clients. However, this solution requires modifications to the 802.11
standard and, thus, changes to both mobile clients and APs are nec-
essary. Further, this solution does not consider fairness issues and
does not support adaptive PSM clients.

In this paper, we show through extensive experiments that back-
ground unicast traffic can negatively impact not only the energy
drain of PSM clients, but also fairness to CAM clients and even
network capacity. Further, our AP-based solution, NAPman, does
not require any changes to the 802.11 protocol and can reduce the
energy consumption of unmodified static and adaptive PSM clients
in the presence of background CAM or PSM traffic.

2.2.3 Network Support

Network-based proxies are also often used for reducing appli-
cation energy consumption [4, 9]. In [4], the polling responsibil-
ity of applications is shifted from the mobile device to a network-
based proxy which then aggregates and sends the poll responses
in a batch. In [9], a proxy is used to batch packets from various
streaming applications in a coordinated manner with the mobile de-
vice so that the device can sleep between the receptions of batched
packets. In PSM-throttling [31], the authors utilize traffic shap-
ing for energy reduction without using a proxy by increasing the
burstiness of traffic from a streaming server using targeted zero-
sized TCP receive window messages.

While these approaches help shape a given client’s traffic to save
energy, NAPman isolates client’s traffic from each other to save
energy, and therefore these techniques are complementary to NAP-
man. Other work prioritizes a subset of PSM clients through ser-
vice level contracts between clients and access points [20], but does
not try to eliminate PSM client contention.

Lastly, a set of approaches allows the AP to help its clients save
power. In [30], the authors propose multiple-bit TIMs that indi-
cate the number of packets for each PSM node to receive. Assump-
tions are made on PSM traffic (sent in contiguous bins, fixed packet
size, etc.), allowing nodes to sleep during the transmission to other
PSM nodes. In Centralized PSM [33], the AP selects certain pa-
rameters for its clients, such as beacon interval, listen interval and
contention window size, in order to reduce the simultaneous wake-
ups of clients. In LAWS [22], the AP advertises a subset of PSM
clients in the beacon and clients use information in the beacons
to determine their polling sequence in order to help avoid client
contention. Finally, [21] uses heuristics to approximate the global
optima in power-savings over all PSM clients in a generalized PSM
setting. All of these approaches require both client and AP modifi-
cations. In NAPman, only AP-side changes are required to isolate

Access Point PSM Scheduling

Linksys BEFW11S4 ver 4 Normal

MadWifi 0.9.4-based AP Normal

D-Link DIR-635 802.11n High priority

DD-WRT v23 SP2-based AP High priority

Linksys WRT54GL Normal

Linksys WRT310N 802.11n High priority

Netgear WGR614 v7 Normal

Table 1: PSM scheduling techniques for APs in the wild

PSM clients from one another and to isolate PSM traffic from back-
ground traffic in a fair manner.

2.2.4 Side-Channel Information

Given the high energy costs of WiFi scanning and CAM opera-
tion, several systems have been proposed to turn on the WiFi radio
based on some side-channel information. Wake-on-Wireless [29]
uses a low power radio to turn on WiFi, while Cell-to-Notify [1]
uses incoming cellular caller ID information to wake up the WiFi
radio. Further, context information such as current location from
cellular towers or usage history [28] or even Bluetooth contact pat-
terns [3] can be used to avoid unnecessary WiFi scanning. Again,
these approaches are complementary to NAPman.

3. PSM IMPLEMENTATION AT AP
We would like to first understand how PSM is implemented in

existing commodity APs. Since this is usually not described in the
vendor provided specifications, we ran our own controlled exper-
iments where we connect some PSM and CAM clients to the AP,
and examine how the AP delivers PSM packets while varying back-
ground traffic to the CAM clients. We use WiFi equipped smart-
phones as clients for this experiment (details of the experimental
setup can be found in Section 7) and embed sequence numbers in
the payload of each packet. We then analyze the wireless packet
traces and try to reverse engineer the scheduling mechanism imple-
mented at the AP.

3.1 PSM Implementation on Commercial APs
We found that most APs implemented PSM packet delivery in

one of two ways: normal or high priority. In the case of normal
scheduling, on receiving a PS-POLL packet or a NULL frame from
a PSM client, the AP enqueues one or more PSM packets at the tail
of the transmission queue. In the case of high priority scheduling,
the buffered PSM packets are transmitted immediately by queueing
the packets in a separate transmission queue with a higher priority.
Table 1 lists some of the popular commodity APs we tested and the
PSM implementation mode used.

The PSM implementation can impact client energy consumption
(Section 4.1), network capacity (Section 4.2) and fairness (Sec-
tion 4.3). We next discuss how normal and high priority implemen-
tations are unfair to PSM and CAM clients, respectively. We then
propose a fairness property that is desirable and is enforced by the
NAPman PSM implementation.

3.2 Fairness
The normal implementation queues PSM traffic at the transmis-

sion queue’s tail and is unfair to PSM clients because their packets
may be transmitted by the AP after packets to other CAM clients,
even if the packets to CAM clients arrived subsequent to the PSM
packets (the PSM packets may have been waiting in the PSM buffer).

 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 850

 100 200 300 400 500 600 700 800 900 1000

P
o

w
e

r
(m

W
)

Background Traffic (Kbps)

Normal
High Priority

Figure 1: Power drawn by a static PSM client receiving a 128

Kbps radio stream with varying CBR background traffic

On the other hand, the high priority implementation can be simi-
larly unfair to CAM clients because PSM packets are scheduled at
the head of the queue. Thus, current commercial AP implementa-
tions are unfair to either PSM or CAM. This raises the question:
What is a good fairness policy to enforce at the AP?

Clearly, while first-come-first-served (FCFS) is a good fairness
policy, scheduling packets in a FCFS manner can be non-work con-
serving. A strict FCFS policy would require CAM packets that ar-
rive when an older PSM packet is buffered to unnecessarily wait
until the PSM packet is sent. This idle time can waste network
capacity, and thus a strict form of FCFS is not desirable.

In this paper, we enforce a modified form of FCFS that is work
conserving. Basically, we ensure that packets are FCFS for all
clients (CAM/PSM) that are awake. When a PSM client is asleep,
packets for other CAM (and awake PSM) clients can go ahead of
the packets of the sleeping PSM client, thereby avoiding wastage of
network capacity. However, when a PSM client is awake, its pack-
ets will be scheduled FCFS – ahead of packets from other CAM
(or awake PSM) clients that arrived later, but behind packets from
other CAM (or awake PSM) clients that arrived earlier.

Ensuring FCFS alone may not be sufficient at times, since it can
result in temporary starvation for clients in an adversarial setting.
Consider a PSM client which wakes up infrequently to download
buffered PSM packets. Whenever the PSM client wakes up, there
could be multiple buffered packets that are fair in the FCFS sense,
and all such packets are scheduled for transmission in a single burst.
Note that this is a problem for the normal and high priority schedul-
ing approaches as well. This problem can be mitigated by a com-
bination of aging packets in the queue and putting a limit on the
number of packets that are buffered in the queue.

4. MOTIVATION
In this section, we motivate the problem with today’s PSM im-

plementations in the presence of competing traffic.
We first highlight, through controlled experiments, the three se-

rious drawbacks that exist in current PSM implementations in the
presence of competing background traffic, namely, significant in-
crease in client’s energy consumption, decrease in wireless network
capacity due to unnecessary retransmissions and unfairness. Fi-
nally, we use real network traces obtained from a large scale wire-
less network [18] as the background traffic and evaluate its impact
on a hypothetical PSM client attached to that network.

4.1 Impact on Energy Consumption
Single Static PSM Client: Consider the case of a single PSM
client attached to the AP that is subjected to varying amounts of
background traffic. The normal delivery scheme at the AP ensures

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000

P
o

w
e

r
(m

W
)

PSM traffic inter-arrival time (ms)

Normal
High Priority

Figure 2: Power drawn by a static PSM client with saturated

background traffic and varying PSM packet inter-arrival time

the transmission of a buffered PSM packet will never precede pack-
ets that arrive earlier than the buffered packet at the AP. While this
ensures that PSM packets are not unfair to other packets, this has
negative implications in terms of energy savings when there is a sig-
nificant number of packets destined for other clients in the transmis-
sion queue. In this case, the PSM client is forced to remain in high
power CAM mode for a long duration, while background packets
that are already in the queue are being drained, before receiving
its buffered PSM packet. Note that, for this case, the high priority
scheme doesn’t suffer from this problem since the PSM client will
receive its buffered packets immediately as they are given priority
over other packets already in the transmission queue.

Figure 1 depicts the base power consumed by an 802.11b static
PSM client (an HP iPAQ hw6945) that is receiving a 128 Kbps ra-
dio stream as we vary the rate of a background CBR UDP flow
to a CAM client associated to the same AP. We fix the AP’s bi-
trate to 1 Mbps in this experiment for simplicity (see Section 7
for our methodology). The power consumption starts to increase
sharply for the normal scheduling scheme at 400 Kbps CBR rate
(almost 50% channel utilization) as the transmission queue starts
to build up with background packets. When the channel is satu-

rated with background traffic, the power consumption increases to

nearly 2.5 times the no background traffic case. On the other hand,
as expected, the background traffic has negligible impact on power
consumption when the AP is using the high priority scheme.

The impact on PSM client power consumption depends on the
inter-packet arrival time of the PSM packets. Figure 2 depicts the
power consumed by a PSM client when the background traffic is
saturated as we vary the inter-packet arrival time for PSM packets
from one 1024 byte packet every 10ms to one every second. In the
case of one packet every 10ms, both schemes essentially stay awake
continuously because the PSM traffic is saturated since the data rate
is fixed at 1Mbps. We see that for inter-arrival times between 50-
200ms, high priority results in up to 55% lower power consumption
and even for the case of only one PSM packet per second, the high
priority scheduling results in 25% lower power consumption than
normal scheduling. However, as we shall see next, high priority
scheduling is not effective when there are multiple PSM clients.
Multiple Static PSM Clients: Consider the case of multiple PSM
clients attached to the same AP. Figure 3 plots the power drawn by
one PSM client as the number of PSM clients are increased and
background traffic is at saturation. The load for PSM clients is one
1024 byte packet every 100ms. In this case, not only does normal
PSM scheduling cause power consumption to increase by 2X, but
even the high priority scheduling results in increased power con-

sumption of up to 45% for the PSM clients. This is because the
high priority scheme is unable to isolate the PSM clients from each

 300

 400

 500

 600

 700

 800

 1 2 3 4

P
o

w
e

r
(m

W
)

Number of PSM Clients

Normal
High Priority

Figure 3: Power drawn by a static PSM client (1 pkt/100ms)

with varying PSM clients and saturated CBR background rates

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 100 200 300 400 500 600 700 800 900 1000

A
w

a
k
e

 T
im

e
 P

e
r

P
a

c
k
e

t
(s

e
c
)

Background Traffic (Kbps)

Normal
High Priority

Figure 4: Per-packet awake time for an iPhone 3GS receiving a

128 Kbps radio stream with varying CBR background rates

other. Thus, PSM clients end up remaining in high power CAM
while packets of other PSM clients are drained from the high pri-
ority queue. Note that normal scheduling does not see the same
increase in this case because under high background loads the mo-
bile nodes are awake for most of the time anyways.
Adaptive PSM Client: We now examine how background traffic
impacts clients that implement adaptive PSM using NULL frames.
Recall that adaptive PSM clients go from CAM to PSM when they
do not receive any packets for an idle timeout interval. Different
client implementations choose different values for the timeout in-
terval. If the timeout interval is larger than the packet inter-arrival
time, the client remains in CAM throughout the duration of the
communication, irrespective of whether there is background traffic
or not. For example, we found the HTC Magic phone running An-
droid uses adaptive PSM with an idle timeout of approximately 3
seconds while the iPhone 3GS uses adaptive PSM with a timeout
value in the range of 20-25ms. Thus, for an Internet radio appli-
cation, the WiFi radio on HTC Magic would be in CAM continu-
ously, while the WiFi radio on the iPhone would be able to sleep in
between packet arrivals.

In Figure 4, we depict the impact of background traffic on the
WiFi radio awake time of an iPhone 3GS client using the default
settings on a 128 Kbps radio stream (see Section 7 for why we
were unable to accurately measure the power consumption). In
this case, we see that background traffic results in an increase of
less than 50% in the radio awake time even under saturated condi-
tions. Upon closer examination, we find that this somewhat limited
impact of background traffic is because the iPhone client goes to
sleep aggressively, which has a negative impact on the capacity of
the wireless network as we discuss next.

 0

 0.5

 1

 1.5

 2

 2.5

 100 200 300 400 500 600 700 800 900 1000

R
e

tr
a

n
s
m

is
s
io

n
s
 P

e
r

P
a

c
k
e

t

Background Traffic (Kbps)

iPhone, Normal
iPaq, Normal

iPhone, High Priority
iPaq, High Priority

Figure 5: Average retransmissions per packet for a 128 Kbps

radio stream to an iPhone and an iPAQ with varying CBR

background rates

4.2 Impact on Wireless Network Capacity
One of the drawbacks of having an aggressive timeout value for

transitioning the WiFi radio back to PSM is the risk of missing
packets that are waiting for transmission in the transmit queue.
These packets are invariably retransmitted multiple times by the
AP when normal scheduling is employed, as can be seen from Fig-
ure 5. While the iPhone client manages to receive most of these
packets eventually through retransmissions, these retransmissions
are a significant and unnecessary burden, reducing the capacity of
the wireless network. Even the iPAQ, which uses static PSM, suf-
fers from unnecessary retransmissions, but its retransmissions are
lower compared to the iPhone. Upon analysis of the wireless trace,
we found that when the client does not receive a packet after send-
ing a PS-POLL for the entire duration of a beacon, it examines the
TIM bit in the next beacon and if it is not set, the client simply goes
to sleep assuming the packet may have been lost. However, the
packet is merely delayed due to high background load, and ends up
being retransmitted many times.

We found one interesting observation on iPhones when we in-
creased the inter-arrival time between PSM packets under saturated
background load. We noticed that the number of retransmissions
started to increase, and eventually reached the maximum retry limit
per packet at one second inter-arrival time. This happens because
a buffered packet is enqueued at the end of the transmission queue
and the iPhone only waits 25ms (its idle timeout value) for the PSM
packet. The PSM packet is not delivered in this time and the iPhone
goes to sleep. The TIM bit in the subsequent beacons is not set
(because there is no new PSM traffic) and the iPhone continues to
sleep. As a result the buffered packet is eventually sent while the
iPhone is sleeping and the packet incurs the maximum retransmis-
sions before being dropped.

Another unfortunate side-effect of these retransmissions is the
coupling with the auto-rate mechanism in the AP that ends up low-
ering the data rate of traffic to the client (and to the network as well
due to the rate anomaly problem of 802.11 [5]), as we evaluate in
Section 8. Increasing the timeout value would reduce retransmis-
sions, but at the cost of increased energy consumption on the client.

While high priority scheduling mostly solves the retransmission
issue, it has a major impact on fairness as discussed next.

4.3 Impact on Fairness
The high priority scheme can be significantly unfair to the back-

ground traffic as PSM packets skip ahead of packets that arrived
earlier at the AP. The impact of unfairness on background flows
becomes prominent when the PSM traffic in the network increases
and can lead to starvation of background flows. On the other hand,

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n

Number of Packets

Background packets Normal could skip
Background packets High Priority skips

Figure 6: Examining fairness for a static PSM client

(1pkt/100ms) with saturated background rate for different

scheduling schemes

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1 2 3 4 5 6 7 8

U
D

P
 T

h
ro

u
g

h
p

u
t

(K
b

p
s
)

Number of Background Clients

PSM node throughput
Projected equal share
Background node average

Figure 7: A single static PSM client with high-priority schedul-

ing can take an unfair share of the WLAN capacity

the normal scheme is unfair to PSM clients since it enqueues PSM
packets at the tail of the transmit queue even though these PSM
packets might have arrived earlier than packets ahead of it in the
queue.

Consider the case of a PSM client receiving 1 packet every 100ms
subjected to saturated background CBR flow. Figure 6 shows a
CDF of how many background packets are unfairly skipped by a
PSM packet in the case of high priority implementation and how
many newer background packets are scheduled ahead of a PSM
packet in the case of normal scheduling. In the median case, about
54 background packets are unfairly skipped in the high priority
scheme, while 6 newer background packets are ahead of the PSM
packet in the normal scheme, demonstrating the unfairness inherent
to both the scheduling schemes.

In Figure 7, we show how a single PSM client can adversely
impact the available capacity of the network. We have one static
PSM client and we vary the number of background clients. All
clients, including the PSM client, receive saturated CBR traffic
in the downlink direction. We plot the throughput of the single
PSM client, the average of each background client, and a projected
“equal” throughput, corresponding to what every node would have
received if it received the same share of the medium. We see a sin-
gle PSM client with high demand takes away half of the network
capacity, leaving all the background nodes to share the remaining
half. The reason the PSM client doesn’t get full capacity is because
the PS-POLL message must contend with the AP. If the PS-POLL
gets the medium, then a PSM packet is sent. If the AP wins con-
tention, then a background packet is sent. In the case of adaptive
PSM (not shown), where the client sends only a single NULL frame
to receive all its buffered packets, the client could use up almost the

Figure 8: Impact of background network traffic on energy con-

sumption of a PSM client streaming 192 Kbps radio

entire capacity of the network, starving all other clients, if the high
priority scheme is used for adaptive PSM.

4.4 Trace Analysis
While the previous section highlighted the issues with current

PSM implementations when subjected to controlled amounts of
background traffic, it is not immediately clear if such situations
are common in regular usage. In order to evaluate the impact of
realistic network traffic on the energy savings of a PSM client, we
conduct a trace based analysis using real network traces that were
captured in the CSE department building at UCSD [18] for one full
day in 2007. We use these traces as the background network traffic
for a hypothetical PSM client attached to the same network. The
published traces consist of both wired traces captured at a gate-
way router and wireless traces built by merging multiple trace files
captured from sniffers placed at different locations in the build-
ing. In addition, the packet timestamps in these traces are precisely
synchronized to a global clock, which is required for our analysis
described below.

We built a simple simulator that models the PSM buffers and the
transmission queue for each individual AP in the network. We then
replay the UCSD traces in the simulator to recreate the state of the
transmission queue in time with fine-grained detail. The timestamp
of a packet in the wired trace is noted as the arrival time at the
AP and the timestamp for the same packet in the wireless trace is
taken as the departure time. In addition to replaying the background
traffic, we simulate a PSM client that is connected to one of the
APs in the network, and used a snippet of a real application trace
to simulate the PSM traffic for this client.

We implement the PS-POLL based packet delivery scheme in the
simulator and the AP follows the normal mode of operation where
the buffered PSM packet is enqueued at the tail of the AP’s trans-
mission queue whenever a PS-POLL packet is sent by the client
(given that the high priority mode has unfairness/starvation issues,
we do not consider it a practical solution). We keep track of sleep
and wakeup times for the PSM client while replaying the applica-
tion trace. The total energy consumed by the PSM client for the du-
ration of the application trace is calculated by multiplying the sleep
and the wake up durations with the corresponding power consump-
tion values obtained from our measurements. In order to analyze
the impact at different background loads (and time of day), we vary
the starting time for the PSM traffic trace relative to the background
traffic trace.

Figure 8 shows the energy consumed by the PSM client at the
end of a 10 minute trace of an 192 Kbps Internet radio application

Client-side PSM AP-side PSM Scheduling
Normal High Priority

Static Low energy savings Unfairness

Adaptive
(aggressive timeouts) Reduced capacity Unfairness

Adaptive Low energy savings Low energy savings
(long timeouts) Unfairness

Table 2: Summary of problems for different AP and client im-

plementations of PSM

streaming, when replayed at different starting times in the 24 hours
of background network trace. During the off-peak hours when the
network is lightly loaded, the client does not incur any delay in
receiving the buffered PSM packets and thus sees no negative im-
pact on energy usage. However, during peak hours we see that

the energy consumption of the PSM client is up to 75% higher,
due to contention with background traffic. This analysis validates
our premise that competing background traffic, as seen in realistic
traces, can indeed cause significant energy drain on PSM clients.

4.5 Summary
Using controlled experiments, we first reverse engineered the

PSM scheduling implementation in several commercial APs and
identified APs implement either normal scheduling where PSM
packets are enqueued to the tail of the transmission queue or high
priority scheduling where PSM packets are sent as high priority.
We then showed when there is one PSM client attached to the AP,
competing background traffic can cause PSM client power con-
sumption to increase up to 3X with normal scheduling. While high
priority scheduling keeps power consumption unchanged for the
case of one PSM client amidst background traffic, power consump-
tion of PSM clients goes up by 45% with high priority schedul-
ing when four PSM clients are attached to the same AP. We then
illustrated the negative impact on network capacity due to unnec-
essary retransmissions that are caused because of WiFi clients ag-
gressively sleep. In terms of fairness, we found normal scheduling
is unfair to PSM clients, while high priority scheduling can result
in significant unfairness to background traffic. Table 2 summarizes
all the problems we identified for different combinations of AP and
client implementations of the PSM protocols. Finally, using real
network traces [18] as background traffic, we show that energy con-
sumption of the PSM client can increase by as much as 75% during
peak hours.

We now present the design of NAPman that addresses the issues
identified above, i.e., NAPman will provide fair scheduling at the
AP while, at the same time, ensuring that energy consumption of
one or more PSM clients is not negatively impacted by background
traffic.

5. NAPMAN SYSTEM
In this section, we first enumerate the design constraints for im-

plementing an effective PSM solution on the AP. Next, we go on
to describe NAPman, an AP-based system that addresses the draw-
backs of existing solutions, while meeting our design constraints.

5.1 Design Constraints
We now focus on the design constraints of a system for efficient

delivery of PSM packets buffered at the AP, which can assist PSM
clients to effectively conserve energy even in the presence of com-
peting background traffic. To be effective, yet practical, the sys-
tem needs to meet the following constraints. First, the energy sav-
ings should not be sacrificed at the expense of eliminating fairness,

since unfairness can adversely impact the performance of non-PSM
clients. Second, changes to the clients should not be required since
such a solution would be difficult to deploy given there are plethora
of very diverse WiFi clients already deployed. Third, while soft-
ware modifications to the AP are feasible, the system should not
require changes to the 802.11 standard. Fourth, it should be able to
assist both static as well as adaptive PSM clients, since both modes
are commonly used in clients today. Last, the system should be
able to handle multiple PSM clients simultaneously.

5.2 NAPman
NAPman scheduling is designed to minimize energy consump-

tion of PSM devices while still ensuring fairness. In order to be
energy efficient, PSM clients that wake up need to receive their
packets immediately, say via high priority, so that they can go back
to sleep. In order meet the fairness criteria as defined in Section 3.2,
packets for PSM clients should not be transmitted preemptively be-
fore packets of other clients that arrived earlier at the AP.
Energy-Aware Fairness: NAPman combines energy efficiency
with fairness as follows. The AP first checks if it is fair to trans-
mit one or more PSM packets for a given client at the next avail-
able opportunity; only if the check passes for a given client does
the AP notify the presence of PSM packets for that client. Once
a client is notified and the client informs the AP it is ready to re-
ceive its packets through a PS-POLL or NULL frame, the AP pre-
pares to transmit the PSM packet(s) using a high priority queue.
Before sending the PSM frame, the AP must ensure servicing the
PS-POLL message would not result in unfairness. This could hap-
pen from an adversarial PSM client or simply when the MAC-layer
ACK to the PS-POLL message is lost and the PS-POLL is retrans-
mitted. Pseudo-code of the energy-aware fair delivery scheme used
in NAPman for both static and adaptive PSM clients is shown in
Figure 9. We detail the pseudo-code of the NAPman energy-aware
fair scheduler below.

Static PSM: Handling static PSM clients in NAPman requires only
a simple extension to the static PSM implementation available to-
day. A timestamp is attached to each packet on arrival at the AP
driver. If the timestamp of the packet at the head of the PSM queue
for a client is less than the timestamp of the packet at the head of
the main FIFO transmission queue, transmission of the PSM packet
at the next available opportunity is fair (lines 45–50). In this case,
the PSM queue for this client is advertised as non-empty either in
the upcoming beacon frame using the TIM bit (line 5) or in an al-
ready outgoing PSM packet for the same client using the MORE
bit (line 14). Once a PS-POLL is received, the PSM packet for
the respective client is simply transmitted through a high priority
queue (line 15) since the previous checks already ensured that such
transmission would be fair.
Adaptive PSM: Handling adaptive PSM clients in NAPman re-
quires special attention. This is because existing AP implemen-
tations consider adaptive PSM clients as normal CAM clients as
soon as they switch from PSM to CAM, and thus do not continue to
maintain any PSM-related state for these clients. A major drawback
of these schemes is they perform poorly in the presence of heavy
background traffic for clients using aggressive idle timeouts, like
the iPhone as seen in Section 4.2. Therefore, NAPman continues
to maintain state for adaptive PSM clients even after they transition
to CAM in order to perform energy-efficient fair scheduling.

On receiving a NULL frame from a client that has switched from
PSM to CAM, only those packets that are buffered in the PSM
queue and are fair for immediate transmission get enqueued into the
high priority queue (lines 18–21). The client receives these packets

1 # Called just before beacon transmission for Virtual AP VAPj

2 UpdateBeaconTIM(VAPj)
3 Foreach Cli ∈ PSMclients associated with VAPj

4 If isPacketFair(Cli)
5 Set TIM bit for Cli in this beacon
6
7 # On receiving a PsPoll frame from Cli
8 ReceivePsPoll(Cli)
9 # Verify it’s fair to send this PSM frame

10 If (!isPacketFair(Cli))
11 return
12 Pkt = Dequeue(PSMQueue(Cli))
13 If isPacketFair(Cli)
14 Set MORE bit in Pkt
15 Enqueue(TxQueueHigh, Pkt)
16
17 # On receiving a Null frame from Cli waking up
18 ReceiveNullWakeup(Cli)
19 while(isPacketFair(Cli))
20 Pkt = Dequeue(PSMQueue(Cli))
21 Enqueue(TxQueueHigh, Pkt)
22
23 # On receiving a Null frame from Cli going to sleep

24 ReceiveNullSleep(Cli)
25 Update average IdleTimeouti for Cli
26
27 # Called after a packet to Clk was successfully transmitted

28 PacketTxCompleted(Clk)
29 If (Clk ∈ AdaptivePSMclients)
30 CurrentTime = GetTimeOfDay()
31 SleepTimek = CurrentTime+ IdleTimeoutk
32 Foreach Cli ∈ AdaptivePSMclients
33 If (isPacketFair(Cli) && isNotNearingIdleTimeout(Cli))
34 Pkt = Dequeue(PSMQueue(Cli))
35 Enqueue(TxQueueHigh, Pkt)
36
37 # Check if Cli will be awake for at least next delta ms

38 isNotNearingIdleTimeout(Cli)
39 CurrentTime = GetTimeOfDay()
40 If (SleepTimei - CurrentTime > δ)
41 return True

42 return False
43
44 # Check if Cli has a PSM packet that is fair to transmit

45 isPacketFair(Cli)
46 TSi = Timestamp(Head(PSMQueue(Cli)))
47 TS j = Timestamp(Head(TxQueue))
48 If (TSi < T S j)
49 return True
50 return False

Figure 9: NAPman energy-aware fair scheduling algorithm

immediately, and then enters an idle timeout phase. The remaining
packets that were not deemed fair for transmission at this time, if
any, and any newly arriving packets are buffered in the PSM queue
for that client. While the client is idling in CAM, the AP contin-
ues to check if any packets in its PSM queue have become fair for
transmission. This fairness check is performed anytime a packet is
dequeued from the main transmission queue (lines 28–35). In addi-
tion to the fairness check, we also need to make sure that the client
will not go to sleep in the near future due to a idle timeout (line 33).
This is necessary to avoid the transmission of any packets at the tail
end of the timeout interval, which might result in unnecessary re-
transmissions if the client goes to sleep. This check (lines 38–42)
requires the AP to know the idle timeout value for each adaptive
PSM client. NAPman learns this over time by keeping track of the
transition times for each client (lines 25, 29–31).

Finally, CAM clients sometimes also use NULL frames to in-
form APs to buffer packets for them to perform background chan-
nel scanning operation. However, such use of NULL frames is
quite infrequent since scanning usually happens in the order of
few tens of seconds (the default scanning interval in many Atheros-
based Windows cards is 60 seconds). Thus, NAPman doesn’t cate-
gorize these clients as adaptive PSM clients.
Supporting Multiple PSM Clients: Although the energy-aware
fair scheduling ensures background traffic from CAM clients will
not adversely impact the energy savings of a PSM client, it does
not address the problem of multiple PSM clients competing with
each other. When multiple PSM clients are connected to the same
AP, all of them wake up at the same time for the beacon frame to
check for the presence of any buffered packets at the AP. If multiple
clients request for their buffered packets in the same beacon inter-
val, PSM packets destined for different clients get queued in the
AP’s transmission queue resulting in longer wait times for some of
the clients to retrieve the PSM packets. Use of high priority queues
also doesn’t solve this problem, as we saw in Figure 3. Further-
more, using a shorter beacon interval and advertising the presence
of buffered packets at different beacons also doesn’t help as we
demonstrate in Section 8.1.4.

NAPman leverages virtualization support that is available in most
APs today to address this issue. Virtualization enables one physical
AP to pose as multiple virtual APs, each having a separate beacon
of its own. The basic idea is to have a dedicated virtual AP for each
PSM client in order to completely avoid any contention from traffic
due to other PSM clients. However, one limitation with virtualiza-
tion support is that only a limited number of virtual APs can be cre-
ated with one physical AP. For example, the Atheros chipset allows
up to four virtual APs. NAPman controls how clients associate with
different virtual APs similar to the approach used in DenseAP [8].
By evenly distributing clients among multiple virtual APs and en-
suring that beacon transmissions for the virtual APs are staggered
in time, NAPman reduces the number of PSM clients that wake up
at the same time. When the maximum number of virtual APs has
been reached, then NAPman can assign multiple PSM clients to the
same virtual AP using heuristics such as least-loaded, etc.

In summary, NAPman can achieve energy savings comparable
to the high priority delivery scheme, without trading off fairness.
In addition, NAPman reduces contention between multiple PSM
clients by leveraging AP virtualization. One of the key design
features is its simplicity. We now describe the implementation of
NAPman.

6. IMPLEMENTATION
We prototyped NAPman using the MadWifi v0.9.4 driver [24]

for Atheros-based WiFi cards on the Linux platform. We chose
MadWifi since it has a stable implementation of AP mode, sup-
ports multiple transmission queues with different QoS priorities,
and supports AP virtualization. By default, the AP implementa-
tion in MadWifi uses normal delivery scheme for PSM traffic. All
PSM packets are sent out using the queue for best-effort traffic. We
modified the driver to support high priority schemes by inserting
the PSM packets in one of the higher priority transmission queues,
which gave it priority over best-effort background traffic.

To implement the NAPman fair scheduling algorithm, we modi-
fied MadWifi to attach a timestamp in the descriptor associated with
each packet when it is handed to the driver. We request an inter-
rupt to be generated after each packet is transmitted, and we update
information about the last packet sent in the interrupt service rou-
tine. Each PSM packet keeps track of the background packet that
is inserted into the driver immediately before it. The fairness check

WiFi Client PSM mode

HP iPAQ hw6945 Static PSM

iPhone 3GS Adaptive PSM

gPhone HTC Magic Adaptive PSM

HTC Tilt 8900 Static PSM

Table 3: Smart-phones and PSM modes used in our experi-

ments

routine compares the timestamp of the most recent packet transmit-
ted with the timestamp of the packet in the head of PSM queue for
each PSM client. We modified the NULL frame handler to manage
adaptive PSM clients in NAPman. MadWifi by default removes all
the packets in the PSM queue for an adaptive PSM client and en-
queues them into the transmission queue when the client sends a
NULL frame with the power management bit set. In NAPman we
continue to maintain the PSM state for these clients to ensure PSM
packets are not unfairly transmitted.

MadWifi supports the staggered transmission of beacons for each
virtual AP, which is required for NAPman. However, this feature
requires hardware support to work. Unfortunately, our WiFi cards
did not support this feature. Therefore, for the multiple PSM client
experiments, we set the beacon interval to a small value (25ms)
and simulated staggered beacons by only advertising the TIM bit
for each client at the appropriate beacon corresponding to the as-
sociated virtual AP. We then measured the overhead of waking up
the clients for beacons corresponding to other virtual APs from our
power readings, and subtracted this overhead from our final mea-
surements. Note that all single PSM client experiments did not
need this modification, and they run with the default beacon inter-
val of 100ms.

7. EVALUATION METHODOLOGY
We present the experimental setup and the methodology used to

obtain our results. We analyzed the PSM client behavior on mul-
tiple phones listed in Table 3. Unless otherwise noted, all exper-
iments with static PSM are based on the HP iPAQ hw6900 series
smart-phone, while adaptive PSM runs are based on the iPhone
3GS. The different APs evaluated in our testbed are listed in Ta-
ble 1. Unless otherwise noted, we use a Linux PC with modified
MadWifi driver that implements normal, high priority and NAPman
scheduling as the AP for our experiments.

We measure the power consumed by the phone using an exter-
nal power monitoring device from Monsoon Solutions [25]. The
power monitor tool supplies current to the phone instead of the bat-
tery and is able to sample the average current drawn by the device
at 5000 Hz. We were unable to connect the power monitor to the
iPhone since the battery unit is concealed inside the phone and it
was difficult to open the case without damaging the phone. For ex-
periments with the iPhone, we examine the NULL frames to mea-
sure the time the WiFi radio stays awake, which is a good indicator
of the power consumed by the radio interface. We turned down
the backlight on the phone and disabled all other communication
interfaces such as 3G and Bluetooth in order to isolate the power
consumption of the WiFi interface. For experiments other than the
auto-rate experiments, we fixed the PHY data rate of the traffic to 1
Mbps and ensured negligible loss on the wireless links. To gener-
ate controlled background traffic in our experiments, we use a Win-
dows XP machine with a Netgear WAG511 WiFi network adapter
as a CAM client connected to the AP. Unless otherwise stated, we
evaluate all experiments for five minutes in order to obtain our re-
sults.

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 750

 100 200 300 400 500 600 700 800 900 1000

P
o

w
e

r
(m

W
)

Background Traffic (Kbps)

Normal
NAPman
High Priority

Figure 10: Power drawn by a static PSM client (1 pkt/100ms)

with varying CBR background rates

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 200 300 400 500 600 700 800

L
a

te
n

c
y
 (

m
s
)

Background Traffic (Kbps)

Normal
NAPman
High Priority

Figure 11: Average latency for packets to a static PSM client (1

pkt/100ms)

8. EVALUATION
In this section, we first start with controlled PSM client traffic

in order to highlight various aspects of the NAPman system. We
then focus on NAPman performance for various applications such
as Internet radio, web browsing, streaming video, IM, etc. We do
not evaluate applications that require QoS such as VoIP or interac-
tive gaming since the U-APSD approach of 802.11e (Section 2) is
effective for those classes of applications.

8.1 Controlled Experiments
In these experiments the PSM client receives one 1024 byte packet

every 100ms. This controlled traffic is intended to represent the
worst case for the various scheduling schemes since there is an out-
standing packet every beacon interval for the PSM client.

8.1.1 Power Consumption

In Figure 10, we present the power consumption of NAPman’s
fair scheduling versus normal and high priority scheduling for static
PSM clients in the presence of varying background traffic. We
can see that the power consumption of NAPman’s fair scheduling
is similar to the power consumption of the high priority schedul-
ing (the two curves overlap) and results in power reduction of up
to 57% compared to the normal scheduling approach. Further-
more, unlike the high degree of unfairness caused by high priority
scheduling (Figure 6), NAPman achieves this without causing any
unfairness to background flows.

8.1.2 Latency

Figure 11 shows the latency of the various scheduling schemes
for a static PSM client. We define latency as the time the PSM
packet is sent to the AP driver to the time the PSM packet is con-

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000 6000

P
o

w
e

r
(m

W
)

Background Traffic (Kbps)

Normal
NAPman

High Priority

Figure 12: Power drawn by a static PSM client (1 pkt/100ms)

with auto-rate

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 1000 2000 3000 4000 5000 6000

L
a

te
n

c
y
 (

m
s
)

Background Traffic (Kbps)

Normal
NAPman
High Priority

Figure 13: Average latency for packets to a static PSM client (1

pkt/100ms) with auto-rate

firmed as delivered to the client (timestamped by the ACK received
at the AP). At low background rates, the latencies between the
scheduling schemes are comparable since the transmission queue
does not build up. Once the transmission queue starts to build up
(around 700 Kbps), NAPman’s fair scheduling actually results in
reduced latency compared to normal scheduling. This may be sur-
prising if one views fair scheduling as delaying PSM traffic until it
is fair in order to advertise the TIM bit (Figure 9), but as we saw in
Section 4.3, the unfairness to PSM clients under normal scheduling
is in fact rectified by NAPman’s fair scheduler. The latency of high
priority scheduling stays relatively constant because it can always
skip ahead of any pre-existing background traffic.

8.1.3 Impact of Auto-Rate

So far, for simplicity, we used a fixed rate of 1 Mbps for our ex-
periments. In Figure 12, we present the results when the AP is set
to MadWifi’s default auto-rate algorithm. We move the background
client across the lab so the link loss averages around 26% and keep
the static PSM client near the AP. The AP is tuned to 802.11b be-
cause our PSM client has an 802.11b only card.

As we can see, even with the lowest background rate (100 Kbps),
normal scheduling uses 40% more power than both the NAPman
and high priority scheduling schemes. With saturated background
traffic, normal scheduling uses 3.4 times more power than NAP-
man.

There are a couple of trends to discuss from this graph. First,
even under small background rates, NAPman sees improvement
over normal scheduling with auto-rate compared to the fixed rate
case where both schemes were identical. This is because the link
to the background client can be lossy. The lossiness requires re-
transmissions which in turn causes build up of the packets in the
transmission queue. Second, with normal scheduling, while the

 300

 400

 500

 600

 700

 800

 1 2 3 4

P
o

w
e

r
(m

W
)

Number of PSM Clients

Normal
High Priority

NAPman

Figure 14: Power drawn by a static PSM client (1 pkt/100ms)

with varying number of static PSM clients and saturated CBR

background rates

power consumed generally rises with increased background traffic,
there are significant variations. This is due to variations of the link
quality of the background client that affect the actual background
usage of the channel. Figure 13 has a similar pattern – as loss fluc-
tuates, so does the latency. We see that the latency of PSM traffic
under normal scheduling can be quite high, up to 4.6 times higher
than NAPman. This is due to issues with missed PS-POLL oppor-
tunities and resulting unnecessary retransmissions as discussed in
Section 4.2.

8.1.4 Multiple PSM Clients

In Figure 14 we plot the power consumed when multiple static
PSM clients are associated with the AP. We set the PSM traffic to
one PSM packet every 100ms and saturated the background traffic
with CBR. We vary the number of PSM clients from 2 to 4 and
measure the power consumed at one PSM client. Schemes that re-
duce the amount of time the PSM client waits for its PSM packet
(high priority scheduling and NAPman) consume less power than
normal scheduling. Furthermore, by reducing contention among
PSM clients, NAPman is able to save more power than high priority
scheduling. All told, normal scheduling draws 159%-170% more
power than NAPman and high priority scheduling draws 43%-64%
more power than NAPman. Note that we would expect the high pri-
ority and NAPman schemes to eventually converge once the num-
ber of clients increases over the number of available virtual APs
(we only have 4 smart-phones to test with), however, NAPman
would still provide fairness.

Instead of the AP virtualization used in NAPman, one simple so-
lution to isolate PSM clients is to just reduce the beacon interval.
This allows the AP to advertise the presence of buffered packets
selectively to one or a small number of PSM clients without in-
creasing latency. However, one issue with this simple approach
is that all clients will have to wake up for every beacon to see if
the beacon has the TIM bit set for it. Our measurements on the
iPAQ indicate reducing the beacon interval from 100ms to 25ms re-
sults in a 28% increase in overall power consumption of the client.
Each client spends a constant amount of time waking up for a bea-
con (typically a few milliseconds to offset issues with clock skews
and to avoid missing beacons). Thus, as the beacon interval is re-
duced, the amount of time spent awake, and energy consumption,
increases super-linearly, making the frequent beacon approach in-
viable as a power saving solution.

8.1.5 Adaptive PSM Clients

We now consider adaptive PSM clients. In Figure 15, we plot
the awake time, per packet, for an iPhone client with demand of

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 100 200 300 400 500 600 700 800 900 1000

A
w

a
k
e

 T
im

e
 P

e
r

P
a

c
k
e

t
(s

e
c
)

Background Traffic (Kbps)

Normal
NAPman
High Priority

Figure 15: Awake time per packet with varying background

traffic for an iPhone 3GS (1 pkt/100ms)

 0

 0.5

 1

 1.5

 2

 2.5

 100 200 300 400 500 600 700 800 900 1000

R
e

tr
a

n
s
m

is
s
io

n
s
 P

e
r

P
a

c
k
e

t

Background Traffic (Kbps)

Normal
NAPman
High Priority

Figure 16: Retransmissions per packet with varying back-

ground traffic for an iPhone 3GS (1 pkt/100ms)

 260

 280

 300

 320

 340

 360

 380

 400

 100 200 300 400 500 600 700 800 900 1000

P
o

w
e

r
(m

W
)

Background Traffic (Kbps)

Normal
NAPman
High Priority

Figure 17: Power drawn by a static PSM client for an eBuddy

trace with varying CBR background traffic

one packet every 100ms and varying background rate. In Figure 16
we plot the number of retransmissions for each packet, on average,
for the same experiment. We see that NAPman is able to keep
similar awake time as high priority scheduling while minimizing
retransmissions.

8.2 Trace-Driven Experiments
We now evaluate NAPman using traces from common applica-

tions that are used in smart-phones today.

8.2.1 Chat Application

We collected traces for the eBuddy chat application [12] by first
running the application and logging and timestamping the pack-
ets sent and received. To support repeatability of the experiments,

Trace Uplink Pkt Size Uplink Inter-Arrival Downlink Pkt Size Downlink Inter-Arrival

128 Kbps Radio 53 bytes 90.89ms 1450 bytes 90.89ms

Pandora 54 bytes 186.32ms 1514 bytes 349.86ms

eBuddy 418.2 bytes 3328.2ms 261.9 bytes 977.05ms

Table 4: Average statistics for trace-driven evaluations

 0.036

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 100 200 300 400 500 600 700 800 900 1000

A
w

a
k
e

 T
im

e
 P

e
r

P
a

c
k
e

t
(s

e
c
)

Background Traffic (Kbps)

Normal
NAPman
High Priority

Figure 18: Awake time per packet for a 128 Kbps radio trace

with varying CBR background traffic for an iPhone 3GS

rather than independently running the application for each experi-
ment, we replay the identically collected trace as traffic to a static
PSM client and evaluate the performance of various scheduling
schemes. We vary the background CBR traffic rates and plot the
power drawn by the PSM client for the different scheduling schemes
in Figure 17. Table 4 shows the average traffic statistics for the
eBuddy application as well as other applications we evaluate.

We note the following for the eBuddy experiments. First, the
base power is higher in these traces because the PSM client must
wake up frequently to send updates. The eBuddy traces feature
infrequent downlink data, and thus opportunities for improvement
are small. Regardless, NAPman delivers up to 30% improvement at
saturated background conditions and about 10% improvement for
moderate traffic (500 Kbps) over the normal scheduling scheme.
The NAPman and the high priority schemes exhibit similar perfor-
mance.

8.2.2 Streaming Audio

We replay a trace of a 128 Kbps radio stream for an adaptive
PSM client. We examine the average per-packet awake time for
NAPman, normal scheduling and high priority scheduling in Fig-
ure 18. Again, the NAPman approach provides similar benefits to
the high priority scheme.

In Figure 19 we plot the number of retransmissions per packet
and note similar trends as in Figure 16. The trends for Pandora,
another streaming audio application, are similar and are omitted.

8.2.3 Web Browsing

In Figure 20, we evaluate the impact of a web browsing work-
load for a static PSM client. We use TCP to download a file the
size of www.mobile.msnbc.com, which is approximately 448
Kb. Each client downloads the page and then sleeps for an aver-
age of 39 seconds, which studies have shown is an average viewing
time between downloading webpages [11]. We repeat the experi-
ment five times and report the total energy consumed (in Joules) by
each of the scheduling schemes. Consumed energy in this case also
takes into account the total download time, since download latency
with TCP will vary with different scheduling schemes. In the case
of normal scheduling, when the background load is high, the con-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 100 200 300 400 500 600 700 800 900 1000

R
e

tr
a

n
s
m

is
s
io

n
s
 P

e
r

P
a

c
k
e

t

Background Traffic (Kbps)

Normal
NAPman

High Priority

Figure 19: Retransmissions per packet for a 128 Kbps radio

trace with varying CBR background traffic for an iPhone 3GS

 50

 100

 150

 200

 250

 300

 100 200 300 400 500 600 700 800 900 1000

C
o

n
s
u

m
e

d
 E

n
e

rg
y
 (

J
)

Background Traffic (Kbps)

Normal
NAPman
High Priority

Figure 20: Consumed energy of a static PSM client for a web

browsing workload

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n

Number of Packets

Background packets Normal could skip
Background packets High Priority skips

Figure 21: Fairness of a static PSM client for a web browsing

workload under saturated background rates

nection times out and the download does not even complete (due
to the issues discussed in Section 4.2 whereby the client radio goes
to sleep while the packet is in the queue). Both NAPman and high
priority scheduling use 3X to 4X less energy than normal schedul-
ing with NAPman requiring around 15% more energy than the high
priority scheduling under high background load.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 100 200 300 400 500 600 700 800 900 1000

C
o

n
s
u

m
e

d
 E

n
e

rg
y
 (

J
)

Background Traffic (Kbps)

Normal
NAPman
High Priority

Figure 22: Consumed energy of a static PSM client for a 30

second YouTube workload

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 10 20 30 40 50 60 70 80

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n

Number of Packets

Background packets Normal could skip
Background packets High Priority skips

Figure 23: Fairness of a static PSM client for a 30 second

YouTube workload under saturated background rates

In Figure 21 we show the fairness results. In the median case
about 21 background packets with newer timestamps are sched-
uled ahead of a PSM packet for the normal scheduling scheme.
The unfairness of high priority scheduling is also shown, and in
the median case 40 background packets are unfairly skipped by a
PSM packet. Note that NAPman scheduling does not unfairly skip
any background packets and does not have any background packets
with newer timestamps enqueued ahead of it.

8.2.4 YouTube Video

In Figure 22, we emulate a YouTube video download workload.
The PSM client uses TCP and downloads a 30 second video en-
coded at the rate of 330 Kbps. Previous work has shown 330 Kbps
to be an average bitrate for YouTube videos [10]. We vary the CBR
background rate and plot the consumed energy (in Joules) of each
of the scheduling schemes.

Again, we see that normal scheduling performs poorly and the
download remains incomplete at saturated background loads. Even
under lower loads (300 Kbps), NAPman delivers energy savings of
13% and under a background load of 800 Kbps, NAPman deliv-
ers 60% energy savings compared to normal scheduling. NAPman
performs worse than high priority scheduling because high priority
scheduling can use its unfairness to overtake the median and finish
its download faster than the other schemes.

Finally, in Figure 23, we show the fairness results. In the nor-
mal scheduling scheme about 38 background packets with newer
timestamps are scheduled ahead of a PSM packet in the median
case. Again, the unfairness of high priority scheduling is shown
and 48 background packets are unfairly skipped by a PSM packet in
the median case. As before, NAPman scheduling does not unfairly
skip any background packets and does not have any background
packets with newer timestamps enqueued ahead of it.

9. NAPMAN ENHANCEMENTS WITH

CLIENT SUPPORT
Having described and evaluated NAPman, an AP-based solution,

we now step back and ask ourselves what if we had the flexibility
to modify the PSM implementation on the clients as well. Could
we do anything better than NAPman? In this section we describe
NAPman-Dynamic, a variant of NAPman with two major enhance-
ments that utilize client-side support but do not require any changes
to the 802.11 standard. The first enhancement deals with how to
better manage wakeup schedules of PSM clients, thereby lowering
latency. The second one deals with how to put adaptive PSM clients
to sleep more efficiently.
Dynamic Beacon Interval: Currently, the PSM client’s wake up
schedule is tied to the beacon interval. However, if we could inform
the client to wake up at arbitrary times instead of the fixed beacon
interval, then the AP can fine tune the wake up schedules accord-
ing to the current traffic demands. When the traffic for a client
is high, the beacon interval can be reduced on the fly for the corre-
sponding the virtual AP. This enables the AP to provide lower laten-
cies for PSM clients. NAPman-Dynamic controls when the PSM
client wakes up to retrieve the buffered PSM packets. In NAPman-
Dynamic, clients are informed about changes in the beacon sched-
ule by using the Beacon Interval field in the beacon frame. Note
that existing clients we have examined do not seem to support this
option since these clients appear to check this field only during as-
sociation. NAPman-Dynamic requires simple modifications in the
client WiFi driver to keep track of changes in the beacon interval
field and appropriately change the wake up schedules.
MORE Bit Indication for Adaptive PSM: The second enhance-
ment addresses the inefficiencies in adaptive PSM clients that arise
due to the use of fixed idle timeout intervals before transition to
sleep. As summarized in Table 2, aggressive timeouts can result in
high packet retransmissions and reduced wireless capacity, while
long timeouts can waste too much energy. In NAPman-Dynamic,
the AP informs an adaptive PSM client whether there are any more
packets available for immediate transmission using the MORE bit.
Clients that detect the MORE bit is not set can immediately go to
sleep avoiding the need to stay awake for the idle timeout period.
Thus, this idea incorporates the benefits of static PSM into adaptive
PSM. Existing adaptive PSM clients that we have examined do not
look at the MORE bit when they are in CAM mode, but again, this
can be fixed quite easily.

NAPman-Dynamic uses the two enhancements described here to
manage the sleep and wakeup schedules of multiple PSM clients
using a simple slot based reservation scheme. Time is divided into
fixed size slots, and the beginning of each slot represents a potential
beacon transmission. Thus a slot indicates an opportunity to trans-
mit one or more PSM packets to a client. The conditions to send
a PSM packet are similar to NAPman (the packet is fair and sent
with high priority), and background packets can be sent in unused
slots or during the unused time of a reserved slot. Each virtual AP
reserves slots for the clients associated with it. NAPman-Dynamic
keeps track of all the slots used by individual virtual APs. When a
client first joins the network, the virtual AP reserves the first avail-
able slot for its beacon. In addition, the virtual AP also reserves the
slots at default beacon interval times for the client, when there are
no packets for the client. If a slot is already reserved, it searches for
the next available slot and informs the client using beacon interval
interval field so that the client knows when to wake up to receive
the next beacon. If there are buffered PSM packets for a client at
a particular beacon, similar to NAPman, the virtual AP first checks
if the packets are fair. If so, it advertises PSM packets for the client

 60

 65

 70

 75

 80

 85

 90

 100 200 300 400 500 600 700 800 900 1000

C
o

n
s
u

m
e

d
 E

n
e

rg
y
 (

J
)

Background Traffic (Kbps)

NAPman
NAPman-Dynamic
High Priority

Figure 24: Comparing NAPman-Dynamic with NAPman for a

web browsing workload

using the TIM bit. If none of the packets are fair in the current
beacon, it estimates the time when the packet(s) becomes fair and
reserves the appropriate time slot for transmission.

We implemented NAPman-Dynamic with client support and com-
pare its performance with NAPman and high priority scheduling.
We ran a similar workload as in the experiment corresponding to
Figure 20. Figure 24 shows the power consumed by a PSM client
for the three approaches (since our client did not support adaptive
beacon intervals, we manually set the beacon interval to one slot
time, 25ms, and subtracted the overhead from waking up for un-
necessary beacons). We see that the power consumed by NAPman-
Dynamic is lower than NAPman by around 9% at high loads, nar-
rowing the gap with the high priority scheme while still maintaining
fairness.

10. CONCLUSION
The energy consumption of a WiFi radio is a significant drain on

the battery of mobile smart-phones and thus both APs and smart-
phones have implemented a variety of WiFi PSM strategies for sav-
ing power. We show that both the normal/high priority scheduling
implementations in commercial APs and the static/adaptive PSM
strategies used in smart-phones suffer from several serious draw-
backs in the presence of competing background traffic, namely, a
significant increase of up to 300% in client’s energy consumption,
decrease in wireless network capacity due to unnecessary retrans-
missions, and unfairness.

We present the design and implementation of NAPman, an AP-
based incrementally deployable solution. NAPman employs a new
energy-aware fair scheduling algorithm and leverages virtualiza-
tion to reduce energy consumption by up to 70% and eliminates
unnecessary retransmissions while maintaining fairness. As part
of future work, we are looking into extending NAPman to support
scheduling algorithms that would allow clients to trade-off latency
for energy gains.

11. ACKNOWLEDGMENTS
We thank Venkata Padmanabhan for discussions during the early

stages of the project. We appreciate the insightful feedback from
our shepherd, Margaret Martonosi, and the anonymous Mobisys
2010 reviewers. We extend our gratitude to Upendra Shevade, who
lent his iPhone and provided the iPhone applications to run our
experiments.

12. REFERENCES

[1] Y. Agarwal, R. Chandra, A. Wolman, V. Bahl, K. Chin, and
R. Gupta. Wireless Wakeups Revisited: Energy Management
for VoIP over Wi-Fi Smartphones. In MobiSys, 2007.

[2] M. Anand, E. Nightingale, and J. Flinn. Self-Tuning Wireless
Network Power Management. In MobiCom, 2003.

[3] G. Ananthanarayanan and I. Stoica. Blue-Fi: Enhancing
Wi-Fi Performance using Bluetooth Signals. In MobiSys,
2009.

[4] T. Armstrong, O. Trescases, C. Amza, and E. Lara. Efficient
and Transparent Dynamic Content Updates for Mobile
Clients. In MobiSys, 2006.

[5] G. Berger-Sabbatel, F. Rousseau, M. Heusse, and A. Duda.
Performance Anomaly of 802.11b. In Proc. of IEEE

INFOCOM ’2003, June 2003.

[6] D. Bertozzi, L. Benini, and B. Ricco. Power Aware Network
Interface Management for Streaming Multimedia. In IEEE

Wireless Communications and Networking Conference,
2002.

[7] S. Biswas and S. Datta. Reducing Overhearing Energy in
802.11 Networks by Low-Power Interface Tuning. In
International Conference on Performance, Computing and

Communications, 2004.

[8] R. Chandra, J. Padhye, A. Wolman, and B. Zill. A
Location-based Management System for Enterprise Wireless
LANs. NSDI, 2007.

[9] S. Chandra and A. Vahdat. Application-Specific Network
Management for Energy-Aware Streaming of Popular
Multimedia Formats. In USENIX, 2002.

[10] X. Cheng, C. Dale, and J. Liu. Statistics and Social Network
of Youtube Videos. In Quality of Service, 2008. IWQoS

2008. 16th International Workshop on, pages 229–238, 2008.

[11] H.-K. Choi and J. O. Limb. A Behavioral Model of Web
Traffic. In ICNP ’99: Proceedings of the Seventh Annual

International Conference on Network Protocols, page 327,
Washington, DC, USA, 1999. IEEE Computer Society.

[12] eBuddy Online Messenger. http://www.ebuddy.com.

[13] Y. He and R. Yuan. A Novel Scheduled Power Saving
Mechanism for 802.11 Wireless LANs. IEEE Transactions

on Mobile Computing, 8(10):1368–1383, 2009.

[14] Y. He, R. Yuan, X. Ma, and J. Li. Analysis of the Impact of
Background Traffic on the Performance of 802.11 Power
Saving Mechanism. Comm. Letters., 13(3):164–166, 2009.

[15] Y. He, R. Yuan, X. Ma, J. Li, and C. Wang. Scheduled PSM
for Minimizing Energy in Wireless LANs. In ICNP, 2007.

[16] Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, IEEE 802.11, June 1999.

[17] Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications amendment 8: Medium Access
Control (MAC) Quality of Service Enhancements, IEEE
802.11E, Nov. 2005.

[18] UCSD CSE Wireless Traces.
http://www.sysnet.ucsd.edu/wireless/traces/sigcomm2007/.

[19] R. Krashinsky and H. Balakrishnan. Minimizing Energy for
Wireless Web Access with Bounded Slowdown. In
MobiCom, 2002.

[20] S.-W. Kwon and D.-H. Cho. Efficient Power Management
Scheme Considering Inter-User QoS in Wireless LAN. In
Vehicular Technology Conference, 2006. VTC-2006 Fall.

2006 IEEE 64th, pages 1–5, Sept. 2006.

[21] J. Lee, C. Rosenberg, and E. K. P. Chong. Energy Efficient

Schedulers in Wireless Networks: Design and Optimization.
Mob. Netw. Appl., 11(3):377–389, 2006.

[22] H.-P. Lin, S.-C. Huang, and R.-H. Jan. A Power-Saving
Scheduling for Infrastructure-Mode 802.11 Wireless LANs.
Computer Communications, 29(17):3483 – 3492, 2006.

[23] J. Liu and L. Zhong. Micro Power Management of Active
802.11 Interfaces. In MobiSys, 2008.

[24] Madwifi. http://madwifi.org.

[25] Monsoon solutions inc. http://www.msoon.com/
LabEquipment/PowerMonitor/.

[26] X. Perez-Costa and D. Camps-Mur. AU-APSD: Adaptive
IEEE 802.11e Unscheduled Automatic Power Save Delivery.
In ICC, 2006.

[27] D. Qiao and K. Shin. Smart Power-Saving Mode for IEEE
802.11 Wireless LANs. In Infocom, 2005.

[28] A. Rahmati and L. Zhong. Context for Wireless:
Context-sensitive Energy-efficient Wireless Data Transfer. In
MobiSys, 2007.

[29] E. Shih, P. Bahl, and M. Sinclair. Wake on Wireless: An
Event Driven Energy Saving Strategy for Battery Operated
Devices. In MobiCom, 2002.

[30] J. A. Stine and G. D. Veciana. A Comprehensive Energy
Conservation Solution for Mobile Ad Hoc Networks. In in:

IEEE International Communication Conference, pages
3341–3345, 2002.

[31] E. Tan, L. Guo, S. Chen, and X. Zhang. PSM-throttling:
Minimizing Energy Consumption for Bulk Data
Communications in WLANs. In ICNP, 2007.

[32] S. Wong, S. Lu, H. Yang, and V. Bharghavan. Robust Rate
Adaptation for 802.11 Wireless Networks. In MobiCom,
2006.

[33] Y. Xie, X. Luo, and R. K. C. Chang. Centralized PSM: an
AP-centric Power Saving Mode for 802.11 Infrastructure
Networks. In SARNOFF’09: Proceedings of the 32nd

international conference on Sarnoff symposium, pages
375–379, Piscataway, NJ, USA, 2009. IEEE Press.

