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ABSTRACT
Driven to create intuitive computing interfaces throughout
our everyday space, various state-of-the-art technologies have
been proposed for near-surface localization of a user’s finger
input such as hover or touch. However, these works require
specialized hardware not commonly available, limiting the
adoption of such technologies. We present SymmetriSense, a
technology enabling near-surface 3-dimensional fingertip lo-
calization above arbitrary glossy surfaces using a single com-
modity camera device such as a smartphone. SymmetriSense
addresses the localization challenges in using a single regu-
lar camera by a novel technique utilizing the principle of re-
flection symmetry and the fingertip’s natural reflection casted
upon surfaces like mirrors, granite countertops, or televi-
sions. SymmetriSense achieves typical accuracies at sub-
centimeter levels in our localization tests with dozens of vol-
unteers and remains accurate under various environmental
conditions. We hope SymmetriSense provides a technical
foundation on which various everyday near-surface interac-
tivity can be designed.
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Figure 1: SymmetriSense pinpoints the fingertip’s (x, y, z)
position near a glossy surface with a single camera.

INTRODUCTION
A major vision of ubiquitous computing is to create seamless
computing interfaces throughout the space of our everyday
life. In this light, various technologies instrumenting every-
day objects with on-surface or near-surface inputs have been
proposed [5, 12, 14, 24, 28, 29, 34, 39, 40]. These technolo-
gies enable finger or hand movements to provide input either
through contact or floating above the surfaces of instrumented
target objects. Despite the advantages of these technologies,
they require using dedicated hardware which can limit adop-
tion of touch or near-touch interfaces for the user’s surround-
ing objects.

We present SymmetriSense, a single camera-based tech-
nology that enables near-surface 3-D fingertip localization
closely above arbitrary glossy surfaces. SymmetriSense is

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2858036.2858286


uniquely advantageous in that it requires only a single com-
modity camera such as one from a smartphone to instrument
a glossy surface, meaning that the technology is immediately
available to almost everyone today. Examples of glossy sur-
faces include various home or office items such as wall mir-
rors, television screens with protective glass, or even kitchen
countertops with a high gloss finish. By mounting the smart-
phone at the edge of the target surface as shown in Figure 1,
SymmetriSense captures the real-time 3-D position of the
user’s fingertip within the near-surface space (i.e., the fin-
gertip’s X- and Y-coordinates on the surface and its Z-height
up to several centimeters from the surface). SymmetriSense
achieves a sub-centimeter accuracy on small form-factor sur-
faces (e.g., 5-inch diagonal) and still retains a centimeter ac-
curacy on much larger surfaces (e.g., 60-inch diagonal).

A key challenge for enabling near-surface fingertip localiza-
tion with a single regular camera is that an image taken from
the camera’s field of view lacks the precise distance to the
finger. Without the distance, the fingertip’s position cannot
be uniquely determined with respect to the surface area. Al-
though using cameras with depth-sensing features such as in-
frared or stereoscopy may resolve this issue [12, 14, 18, 19,
24, 30, 39], such specialized devices are still not as ubiquitous
as a regular camera built in every smartphone. Their lim-
ited availability could significantly hinder many users from
adopting such near-surface input technology throughout their
everyday space. SymmetriSense presents a novel approach
from the state-of-the-art by utilizing the principle of reflection
symmetry and the fingertip’s natural reflection cast upon a
glossy surface. The glossy surface naturally creates a flipped
image of the fingertip at a mirrored position in the camera’s
field of view. The principle of reflection symmetry provides
a geometric condition of the pair-wise positions of the orig-
inal and reflected fingertips, allowing us to obtain a unique
solution for the fingertip’s (x, y, z) position near the surface.

We expect SymmetriSense can serve as a platform on which
hover, touch, or other kinds of finger gestures can be applied
to various everyday items without the addition of new dedi-
cated hardware devices. For example, a user may opt to use
her own smartphone to instantly and temporarily enable this
interface, or for a more permanent installation, she may use a
recycled old smartphone and mount it to a granite countertop
or a dressing table mirror. SymmetriSense can then create
interfaces like virtual touch, proximity sensing, or drawing
a pattern on particular regions of the dressing table mirror.
Many applications could be designed to respond to such in-
puts in cooperation with IoT or connected home technolo-
gies, for example illuminating the room or narrating today’s
weather. SymmetriSense can also turn conventional displays
like televisions or desktop monitors into interactive displays
which respond to the user’s finger inputs. SymmetriSense’s
sufficiently high localization accuracy allows for an interface
design that accommodates multiple interactive buttons or re-
gions, which may be sized and spaced similarly to those in
interactive tablets or tabletops.

We present our design and implementation of a working
SymmetriSense prototype using an off-the-shelf smartphone

as well as a prototype that uses a 60-inch flat panel televi-
sion. While our implementation and evaluation are focused
on the smartphone, it should be noted that SymmetriSense
can be implemented on any other platform supporting a reg-
ular camera and reasonable computing power. We evaluate
SymmetriSense by reporting the basic localization accuracies
with a group of users, as well as the impacts on accuracy
over diverse environmental factors. To be specific, its finger-
localization accuracy has been evaluated with volunteers of
different ages, genders, and ethnic groups. Our evaluation
also includes a robustness test under different lighting condi-
tions and different surface colors and brightness. It is note-
worthy that our particular implementation of SymmetriSense
does not rely on parameters specific to human skin colors or
textures; it can work with any long-shaped pointer in a finger-
like dimension, such as a pen or a finger in a glove. We be-
lieve the evaluations outline the capabilities and limitations
of SymmetriSense, delivering design considerations for de-
velopers to build interfaces on top of SymmetriSense.

The key advantages of SymmetriSense are threefold: (1) it
offers a negligible barrier-to-entry because SymmetriSense
can be built on single-camera commodity platforms such as a
smartphone; (2) it features versatile applicability on various
glossy surfaces providing a modest reflection; (3) its fingertip
localization typically achieves a centimeter accuracy even on
a large form-factor surfaces, enabling a fine-grained, sophis-
ticated surface interface design.

In the next section, we outline related work in ubiquitous
touch interactivity and near-surface interaction. We then de-
scribe our localization technique, which is inspired by the
principle of reflection symmetry. Next we present our im-
plementation process along with various engineering choices,
and we then report the evaluation results in terms of localiza-
tion accuracy and robustness. We conclude after discussing
the limitations and remaining issues of SymmetriSense.

RELATED WORK
There exists a large body of pre-existing work to enable sur-
face interactivity. In spite of this, SymmetriSense offers a
unique advantage by allowing any user with a single com-
modity camera, such as a smartphone, to enable near-surface
3-D fingertip localization on various surfaces. Below we
present a summary of major related works and differentiate
SymmetriSense from them.

Surface Instrumentation for Ubiquitous Touch Interfaces
Bringing computing interfaces out of a few dedicated boxes
to everyday space has been a major interest of ubiquitous
computing and human-computer interaction. Along with the
recent proliferation of touch-screen devices, instrumenting
various everyday surfaces to respond to users’ touch-like in-
puts has received much attention. A number of works ad-
dressed ubiquitous surface instrumentation by localizing the
pointer on various surfaces. PlayAnywhere [39] uses infrared
light sources and cameras with infrared pass filters to locate
touches and hovers of fingertips on arbitrary surfaces. Om-
niTouch [14] and PointPose [19] use a depth camera oriented
towards a surface to detect a larger set of finger input types



like hover, touch, tilt, and rotation. Inverted FTIR [12] uses
a sheet of special acrylic glass with a laterally mounted in-
frared light source and takes advantage of frustrated total in-
ternal reflection to sense multi-touch locations on a display.
WorldKit [40] makes a large ordinary surface instantly touch-
interactive by deploying a paired projector and depth camera
above the target. SMART Board [5] implements a touch-
sensitive whiteboard which localizes the pointer by four cam-
eras at each corner and determines a touch event by analyz-
ing the pointer’s on-surface reflection. Several other works
instrumented surfaces for different types of surface interac-
tivity not relying on fine-grained pointer locations: Touché
[29] determined single- or multi-touch on conductive objects,
Scratch Input [15] and Toffee [41] sensed on-surface scratch
inputs, SurfaceLink [13] sensed on-surface directional mo-
tion of a pointer, and uTouch [7] sensed touch and hover over
an LCD display by tapping on the powerline.

Different from the ubiquitous surface instrumentation works
above, SymmetriSense presents a novel technology requiring
only a single commodity camera to localize the user’s near-
surface fingertip with respect to an arbitrary reflective surface.
Importantly, SymmetriSense is deployable as a smartphone
app, making it highly practical for many end users.

Above-surface Input Technologies
Input technologies above a surface extend the input space be-
yond the discrete boundary of a conventional 2-D touch area.
Diverse technologies have been proposed, including those de-
signed for near-surface interactions in close proximity to the
surface to others that support relatively distant interactions
from the surface. For the space up to a few centimeters above
a surface, SmartSkin [28] determines the depth information
from a user’s hand to the surface by a surface equipped with
capacitive sensor grids, while Z-depth [34] senses the depth
by multi-layered laser planes over the surface. Very recently
a few smartphone models come with built-in hover-sensing
screens like Samsung Air View [37] or Sony Floating Touch
[36]. By using different types of touchscreen panels and/or
different capacitance calibrations, they enable the phones to
detect a hovering fingertip close to the screen. FlexAura
[20] supports proximity sensing from an arbitrary object by
wrapping the target object with a flexible-PCB sensor circuit.
For relatively higher altitudes like several tens of centimeters
above a surface, RetroDepth [18] uses a pair of stereoscopic
infrared cameras to enable precise inputs on and above a
retro-reflective material. Similarly, LeapMotion [24] uses an
infrared transceiver device to detect multi-finger gestures in
the space above the device. Sharp et al. [30] present a Kinect-
based system tracking the detailed mid-air motion of a user’s
hand. Medusa [1] installs 138 proximity sensors around the
perimeter of a tabletop to enrich the tabletop interaction with
the user’s body and arm location contexts.

SymmetriSense targets the near-surface space, i.e., a few cen-
timeters above the surface. Within this space, SymmetriSense
pinpoints the fingertip in terms of its spatial coordinates with
respect to the surface area, at an accuracy comparable to
those provided by the commercial devices with special hover-
sensing screens such as Samsung Air View. SymmetriSense

also provides the fingertip’s height information above the sur-
face which is not supported by those commercial devices.
Later in the paper, we show the accuracy of SymmetriSense
in comparison with Samsung Air View.

Designing Near-surface Interaction
With the emergence of near-surface input technologies, new
interfaces and interaction guidelines incorporating on- and
near-surface space have been studied. Hilliges et al. [16] ex-
plored interactions seamlessly switching between on a table-
top surface and above it. Spindler et al. [33] and Wachara-
manotham et al. [38] studied the vertical thickness guide-
lines to design mid-air gestures within the near-surface space.
Marquardt et al. [21] addressed the notion of continuous in-
teraction space, treating the space on and above the surface
as a continuum, and categorized various interactions mak-
ing use of the space. Detailed interface examples include se-
lective information exposure upon a hovering event [3], pre-
selection guides to improve touch accuracy on small targets
[25], hover-responsive dynamic user interfaces [8], and so on.

We clarify that crafting or assessing user interfaces designed
on top of SymmetriSense is beyond the scope of this paper.
We introduce the technical foundations of SymmetriSense
and analyze its performance metrics to benefit future inter-
face designs and usability assessments.

CHALLENGES AND KEY APPROACH
In this section, we first address the key challenge of localiz-
ing the fingertip with respect to the surface using only a single
regular non-depth camera. Then we present our novel tech-
nique utilizing the natural reflection of the fingertip appear-
ing on a glossy surface. The principle of reflection symme-
try ensures the original image and its reflected image appear
symmetric with respect to the plane of reflection, which is
the interacting surface in our case. We will describe how we
leverage this property to derive the 3-D spatial coordinates of
the fingertip from a single 2-D image from the camera’s field
of view (FoV hereinafter).

Single Vision Challenge in Fingertip Localization
Figure 1 shows a possible placement of the camera (i.e., the
smartphone) with respect to the target surface. The phone is
simply placed at an edge of the television’s bezel with a sim-
ple acrylic mount. This placement allows the phone’s camera
to see the perspective horizontal view of the surface, the fin-
gertip, and the near-surface space in between. Also, placing
the phone right at an edge of the target surface makes Sym-
metriSense easier and more intuitive to use, rather than plac-
ing the phone at a distant location such as on the ceiling. For
the rest of the paper, we use the definitions of X-, Y-, and
Z-axes as shown on Figure 1.

Figure 2 shows that fingertips at two different positions near a
matte surface appear as the same points in the camera’s FoV.
Figure 3 depicts its sagittal cross-section diagram without the
notion of reflection, explaining the uncertainty of the true po-
sition of the fingertip along the line of sight passing from the
camera to the fingertip. One might wonder if the use of the
fingertip’s shadow casted on the surface would help. It may



(a) Viewed from the camera. (b) Viewed from the side.

Figure 2: Fingertips at two different locations appear at the
same points in the camera’s FoV.

Figure 3: Uncertainty in localizing fingertips.

narrow the area in which the fingertip possibly exists, but it
still does not pinpoint the fingertip’s position as the shadow
can be arbitrarily displaced depending on the fingertip’s Z-
axis height and the directions of external lighting sources.

Pinpointing Fingertip by Leveraging Reflection Symmetry
Figure 4 demonstrates how the reflected fingertip makes it
possible to pinpoint the fingertip’s location. The figures are
taken from our high-gloss 60-inch LCD TV screen under the
illuminance of 150 lux, a typical office lighting condition
[23]. Basically, the fingertips at two different locations along
the camera’s line of sight still appear at the same points in the
camera’s FoV. However, their reflected counterparts appear
at different points from each other. This property can be de-
scribed by a set of geometric equations, from which we can
pinpoint the true location of the fingertip. Note that glossy
surfaces with reasonable reflection are very common in our
everyday space. Figure 5 demonstrates reflected fingertips on
four different surfaces, i.e., a restroom mirror, an office win-
dow, a granite kitchen countertop, and a white board.

Our goal is to compute the near-surface coordinates of the fin-
gertip (xs, ys, zs) (denoted in Figure 1) with respect to the sur-
face using the on-camera coordinates (xco, yco) and (xcr, ycr),
the coordinates of the original and the reflected fingertip seen
from the camera’s FoV, respectively (denoted in Figure 7).
Note that we presume a few constants of known values, such
as the vertical and horizontal angles of the camera’s FoV (de-
noted by Θv and Θh, respectively), its mounting angle (de-
noted by ΘHM), the camera’s offset distances from the surface
edges (denoted by Dx and Dy, respectively), the Z-axis height
of the camera above the surface, and so on. We discuss how
to derive those constants in Discussion section.

Determining the Y-axis coordinate
For easier understanding, we begin with a simpler case where
xco and xcr are zero, i.e., the fingertip is on a straight line
from the camera in parallel with Y-axis. Figure 6 depicts the

(a) Viewed from the camera. (b) Viewed from the side.

Figure 4: Fingertips at two different locations still appear at
the same points in the camera’s FoV but their reflected coun-
terparts do not appear at the same locations.

Figure 5: Fingertips reflected on (from left to right): a re-
stroom mirror, an office window, a granite kitchen countertop,
and a white board.

sagittal cross-section diagram of such a case, along the line
from the camera to the fingertip. Now the problem is to find
ys, which can be expressed from Figure 6:

ys = HC tan(ΘHM + θMY ) − Dy (1)

where HC is the height between the camera and the surface.

To obtain the unknown angle θMY , we first use the property
given by reflection symmetry: OY = RY in Figure 6. This
means that 1

2

(
RYC − OYC

)
= RYC − YYC , which can be ex-

pressed by:

1
2

(
tan θRYC − tan θOYC

)
= tan θRYC − tan θYYC (2)

where θYYC =
π

2
− (ΘHM + θMY ) , θRYC =

π

2
− (ΘHM + θMR) ,

θOYC =
π

2
− (ΘHM + θMO) (3)

Equation (2) is equivalent to:

tan θYYC =
1
2

(
tan θRYC + tan θOYC

)
(4)

By using the definition of θYYC in (3) on (4),

θMY =
π

2
− ΘHM − arctan

(
tan θRYC + tan θOYC

)
(5)

Therefore, we can evaluate ys in Equation (1) by using (5) and
(3). Note that θMR and θMO can be obtained from ycr and yco,
respectively. If we assume an ideal pinhole camera without
a nonlinear distortion [11], it gives the following relation for
θMR:

ycr

YFOV/2
=

tan θMR

tan(Θv/2)

Or equivalently, θMR = arctan
(

ycr

YFOV/2
tan

Θv

2

)
(6)
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Figure 6: Sagittal cross-section diagram of a near-surface fin-
ger and its reflection.

Figure 7: Notations to denote the on-camera coordinates of
the original fingertip (xco, yco) and the reflected fingertip (xcr,
ycr) as seen by the camera, with respect to the center (M) of
the camera’s FoV.

where YFOV is the vertical length of the camera’s full FoV, as
denoted in Figure 7.

The expression of θMO is analogous to (6). We applied a poly-
nomial radial distortion correction in our actual implementa-
tion.

Determining the X- and Z-axis coordinates
The general case with nonzero xco and xcr is depicted in Fig-
ure 8. Once we obtain ys, it is rather straightforward to com-
pute the remaining near-surface coordinates, i.e., xs and zs.
Note that zs is equal to OY = YYC − OYC . In turn, this dif-
ference is represented by the difference between two tangent
values:

zs = (ys + Dy)
(
tan θYYC − tan θOYC

)
which can be evaluated with (3), (5), and θMO’s version of (6).
Finally, xs is given by the Pythagorean theorem:

xs =

√
HC

2
+ (ys + Dy)2 tan θYX + Dx

θY X

zs

xs

H

C

XY

Dx

Dy

ys

Figure 8: General case of localizing the fingertip in 3-D
space.

(a) (b) (c) (d) (e)

Figure 9: Finger extraction. (a), (b): Raw images seen by
the camera at two successive frames; (c): Finger extraction
by applying skin color ranges; (d): Finger extraction by inter-
frame differentials; (e): Computing convex hulls.

where the expression of θYX is analogous to (6), in terms of
xcr, XFOV , and Θh.

IMPLEMENTATION
We present the issues and considerations in implementing a
working prototype of SymmetriSense. While our prototype
is built on Samsung Galaxy S5 with Android 5.0, it could
be built on other phones or various off-the-shelf mobile plat-
forms having a single regular camera combined with a em-
bedded computer such as Arduino [2] or Rasberry Pi [27].

Extracting Finger Parts
The approach presented in the previous section assumes that
we can extract the original and reflected finger parts out of
the image seen from the camera’s FoV. Our first attempt was
to extract finger parts whose color values belong to the rep-
resentative color range of the human skin [32]. We further
specified the YCbCr color range between (0, 77, 133) and
(255, 127, 173) [26]. However, we observed this technique is
highly susceptible to background objects similar to skin col-
ors; Figure 9c demonstrates this issue for the given raw image
of Figure 9a. It is also unable to support non-finger pointers
such as a hand in glove or pen.

To overcome the limitations of the color-based technique,
we adopted alternative techniques based on frame differences
[22]. When the user moves her finger near the surface, we ex-
tract the differentials between successive frames. Figure 9d
demonstrates the differentials evaluated from two successive



(a) (b) (c) (d)

Figure 10: Pen extraction. (a), (b): Raw images at two suc-
cessive frames; (c) Inter-frame differentials; (d) Computing
convex hulls around the pair of pen images.

frames shown in Figure 9a and 9b. We set empirically-
determined threshold values to classify a motion at a certain
position on the FoV. To suppress false-positives from non-
finger motions in the background, we find a contour of the
differential area between the frames and compute a convex
hull enclosing the contour as shown in Figure 9e. We clas-
sify the differential area as a finger only for a convex hull
larger than a threshold size. We used the Android OpenCV
library to find contours and compute convex hulls. Another
advantage in this technique is the ability to extract not only
a fingertip but also many different long-shaped pointers, as
shown in Figure 10.

Note that finger extraction is not a part of the novelty we
claim; we integrated well-known, relatively simple image
processing techniques to build a working prototype of Sym-
metriSense. Rather than simply using frame differences,
there may be more advanced object-tracking techniques pro-
posed in the field of image processing [42, 9, 31]. In particu-
lar, Cucchiara et al. [9] proposed a method to precisely extract
a moving object without its shadow included, which may be
applied to SymmetriSense to further improve the finger ex-
traction performance. However, such advanced techniques
are beyond the scope of this paper.

Detecting Fingertips from Finger Parts
In our camera-mounting configuration, the original finger ap-
pears in the top part of the view, while the reflected finger
appears in the bottom part. We first find the original finger-
tip by searching for the bottom-most tangential point in the
original finger part (indicated by the red arrow in Figure 9e).
Starting from this point, we define a narrow rectangular space
stretching downwards to search for the reflected fingertip.

To reduce computation, we leverage the locality of the mov-
ing fingertip. We define a region of interest (ROI) centered at
the previously detected location on the FoV, only in which we
perform fingertip detection. We empirically found an appro-
priate camera resolution to ensure real-time responsiveness
and practical localization accuracy. We used 320×240 pixels
for the camera resolution and its quarter size for the ROI. We
apply these detected locations into the equations in the pre-
vious section to localize the fingertip’s (X, Y, Z) coordinates.
Detection is done at 30 frames per second.

Suppressing Image Noises and Localization Errors
Under low brightness conditions, we observed random noises
on images regardless of a moving object due to the cam-
era’s ISO settings. We applied a blur filter for higher noise-

robustness. To ensure sufficiently large differentials, we com-
pute the difference between the current frame and a past one
four frames behind. We also performed morphology op-
erations (dilate and erode) to acquire well-connected finger
shapes.

Due to the relatively low camera resolution of 320 × 240, a
single pixel error often results in momentary hopping of a fin-
gertip’s locations. To alleviate such behaviors, we applied a
10-frame weighted moving average to smooth the fingertip’s
trajectory. Given the 10 points from those frames, we further
rule out the largest outlier to improve accuracy. All com-
bined, our localization pipeline takes 8.7 ms to compute each
frame (not including the moving average filter lag). Due to
the inherent causality of the moving average filter, real-time
localization introduces a slight noticeable lag. Note that qua-
drupling the resolution would halve the impact of single pixel
error, allowing a shorter moving average to do the equivalent
smoothing effect, and thereby shorten the response lag. How-
ever, all these improvements are at the cost of extra computa-
tion. We will discuss these details in the Discussion section.

We observed subtle localization errors which tend to grow
at outer regions of the camera’s FoV. This is known as ra-
dial distortion [11] due to the non-ideal curvature of the cam-
era’s lens. We implemented additional correction based on
the polynomial approximation model [11, 6]. As the correc-
tion parameters are variables in terms of the focal length, we
disabled Android’s auto-focus feature. In fact having a con-
stant focal length is necessary in localizing the fingertip as it
effectively fixes the camera’s FoV.

EVALUATION
The goal of our experiments is to report the basic fingertip
localization accuracies of SymmetriSense under a wide range
of participants as well as environmental conditions. We be-
lieve this provides numerical implications or guidelines for
future interface designs on top of SymmetriSense. First, we
describe our evaluation settings and then present the results.

Evaluation Settings
We perform three classes of experiments: a fingertip local-
ization accuracy experiment on a smartphone, a fingertip lo-
calization accuracy experiment on a 60-inch television, and
finally a set of microbenchmarks to analyze the accuracy un-
der a variety of environmental conditions.

While SymmetriSense supports a wide array of arbitrary
glossy surfaces, we include a smartphone experiment to com-
pare against an alternative near-surface localization technol-
ogy in the market, i.e., Samsung Air View. The Samsung
Galaxy S5’s Air View is a built-in hover sensing feature en-
abled by extended capacitive sensing supported in its spe-
cific display hardware. The experiment is a set of finger-
hovering tasks on targets shown on different positions of the
display. Upon a participant’s fingertip above a target, we
have SymmetriSense and Air View independently compute
the fingertip’s location. We consider the locations from Air
View as the ground truth, and evaluate the fingertip local-
ization accuracies of SymmetriSense by measuring the off-
set distance between SymmetriSense-computed locations and



(a) Test app screen-
shot on phone.

(b) A phone case with mirror.

Figure 11: Phone experiment settings.

the ground truth locations from Air View. One might wonder
why we do not simply measure the offset distance between
SymmetriSense-computed locations and the corresponding
target locations shown on the display. The reason is to rule
out possible human errors; the participants may not have per-
fectly positioned their fingertips on the targets. By measuring
SymmetriSense-vs-Air View differences, we evaluate the ac-
curacies of SymmetriSense comparative to those of Air View
and irrespective of human errors.

In the TV experiment, we report only the localization results
from SymmetriSense with respect to on-screen targets due to
the absence of an alternative built-in localization technology.
Therefore, the localization errors in TV experiments may in-
clude not only the errors from SymmetriSense technology it-
self but also human errors. Given that the phone experiment
has shown the localization accuracies free from human er-
rors, the TV experiment mainly demonstrates the efficacy of
SymmetriSense on much larger surfaces.

To incorporate diverse finger shapes, skin colors, and pointing
poses in the smartphone and TV experiments, we recruited 18
participants for each experiment. To be specific, the partici-
pants of the phone experiments include 4 females out of 18
and were 38.3 years old on average (std: 10.5 years). Those
of the TV experiments include 4 females out of 18 and were
40.2 years old on average (std: 9.6 years). Our participants
pool consists of left- and right-handed users, and mixed eth-
nicity of Asians, African Americans, Hispanics, and Whites.

Lastly, the microbenchmarks demonstrate if SymmetriSense
is susceptible to various environmental conditions. To be spe-
cific, a series of small case studies were performed over vary-
ing conditions of surface colors, ambient lighting, and screen
brightness. These experiments were conducted on the phone
to use Air View as the ground truth.

Detailed setup for smartphone experiment. A Samsung
Galaxy S5 phone was placed on a desk in a large corporate
office. To retrieve the localization results from both technolo-
gies at minimal time differences, we slightly engineered the
phone’s exterior to make SymmetriSense localize a fingertip
near the phone’s own surface, where Air View is running as

well. Figure 11b shows our phone on a custom acrylic mount
with a mirror above its front camera. This setup produces ge-
ometrically similar effects as having the camera mounted at
an edge of the target surface (as depicted in Figure 8).

18 volunteers were asked to perform a sequence of position-
ing tasks on our test application (shown in Figure 11a). The
test application shows 16 circular targets which are placed
within the camera’s FoV. The circles were 5 mm in radius
and the centers of adjacent circles were separated by 15 mm
on both the X- and Y-axes. For each circle, the participants
were instructed to point at the center of the circle with a hov-
ering fingertip for 5 seconds. During the experiment, two
small dots were shown: a red dot, which corresponds to the
location of the hovering finger as determined by the built-in
Air View feature, and a blue dot, which corresponds to the
location of the finger based on SymmetriSense. Participants
were told to center the red dot in the circle. The process con-
tinued to show 16 circles, all of which are located within the
camera’s FoV. One might think the presence of the dots may
influence a participant’s targeting behaviors, e.g., trying to
center the blue dot instead. Our metric is invariant in spite
of such a participant; we consider the Air View’s locations
as the ground truth, and report the offset distances between
SymmetriSense-computed locations and the ground truth. If
a participant does not follow the instruction and purposely
moves a finger elsewhere, AirView will displace the red dot
to track the finger. It is impossible for the participant to ma-
nipulate the distance in between.

Detailed setup for TV experiment. A phone was affixed
atop a 60-inch LCD TV in an office, and connected via an
HDMI output. Figure 1 shows the setup, where the phone’s
rear camera is angled toward the TV surface. The mounting
angle ΘHM was 63.8 degrees, but SymmetriSense allows dif-
ferent mounting angles. Users were asked to stand in front
of the TV and repeat an experiment similar to the phone ex-
periment. Due to differences in surface areas, camera mount-
ing positions, and camera vantage points, the TV experiment
had a different number and placement of circles. A total of
22 circles were shown, each of which had a 25 mm radius
and was separated by 75 mm on the X and Y axes. As there
is no other technology available for ground truth, we report
the offset distances between each circle center and the corre-
sponding SymmetriSense-computed fingertip locations. No
dots were displayed to avoid potential influences on the par-
ticipants’ targeting behaviors.

We additionally performed a single participant study to mea-
sure the Z-height accuracy. We mounted a ruler below the
pointing finger and instructed the participant to hold the fin-
gertip at several predetermined discrete heights. We visually
inspected the ground truth heights from the recorded pictures
and compared them with the Z-height measured by Sym-
metriSense. Note that Air View does not provide Z-heights.

Evaluation Results

Localization accuracies on a smartphone. The raw data
of fingertip localization over all users and all circles is shown
in Figure 12. Figures 12a and 12b show the locations of the



(a) SymmetriSense offset to Air View. (b) Air View offset to circle centers. (c) SymmetriSense offset to circle centers.

Figure 13: Offset, in millimeters, for Air View and SymmetriSense on the phone.

(a) Samsung Air View. (b) SymmetriSense.

Figure 12: Location estimates on the phone for all users.

fingertip hovering above each target, retrieved from Air View
and SymmetriSense, respectively. The gridlines and circles
corresponding to the actual screen content are also shown for
reference. Our main evaluation metric, i.e., the offset distance
between SymmetriSense-computed locations and Air View’s
ground truth locations, is shown in Figure 13a. For informa-
tion purposes, Figure 13b and 13c present scatter plots of
the locations from Air View and SymmetriSense respectively
relative to each circle’s center. As we discussed earlier, the
results in Figures 13b and 13c may contain human error.

The amount of error is relatively small; the average offset
distance between SymmetriSense-computed locations and the
corresponding Air View’s ground truth locations is 3.61 mm
(std=2.55). As shown in Figure 13a, the errors on the X-axis
are generally lower than the errors on the Y-axis (1.53 mm vs
2.63 mm average). Furthermore, the largest errors in Sym-
metriSense come from the furthest points from the camera:
the furthest row has an average distance of 4.38 mm from
their Air View counterparts, while the closer points have an
average error of 2.55 mm. These limitations are addressed in
the Discussion section.

Finally, we examine how SymmetriSense performs if we ap-
ply a snap-to-grid feature, i.e., snapping the estimated finger-

(a) Location estimates. (b) Offset, in mm, to circle centers.

Figure 14: Location estimates on the TV surface and offsets.

tip position to the closest circle center. We post-process the
data to see if any estimate snaps to a wrong circle. The Air
View estimates are 100% correct. SymmetriSense misclassi-
fies only 2.78% (8 out of 288 samples). All of these errors
occur on the two rows furthest from the camera.

Localization accuracies on a 60-inch TV. Figure 14 shows
the X, Y accuracy results from the TV experiment. Figure 14a
shows SymmetriSense’s estimated locations and Figure 14b
shows the offset of the estimated locations from the circle
centers. As discussed earlier, part of the error from the cir-
cle centers is introduced by the users themselves. Regardless,
the relative error is small: the average distance from the cir-
cle centers to our estimate is only 10.04 mm (std=6.20). Even
though these errors are larger than the phone experiment, the
error relative to the screen size is much smaller in this exper-
iment. None of the snap-to-grid points are misclassified. We
see similar trends as the phone experiment, with the average
error on the Y-axis (7.89 mm) being higher than the average
error on the X-axis (4.70 mm).

Figure 15 shows the the Z-height test results. The user hov-
ered his finger 10, 30 and 50 mm above the screen and the
Z-height estimate was captured. For each distance, 22 data



Figure 15: Z-axis estimate for 10, 30, and 50 mm.

(a) Errors over back-
ground colors.

(b) Errors over lighting
conditions.

(c) Errors over screen
brightness.

Figure 16: Environmental benchmark results.

points were captured, one for each circle center. We index
the circles from 1-22, from left to right, and then top to bot-
tom. For example, the top circle in Figure 14a is Circle 1, the
2nd-to-top is Circle 2, the bottom-left is Circle 18, and the
bottom-right is Circle 22. Note that we are only able to cap-
ture the Z-heights that lie within the camera’s vertical FoV.
This means that for 30 mm height, we cannot capture Cir-
cle 1 (which is closest to the camera), and for 50 mm height,
we cannot capture Circles 1 and 2. Overall, however, Sym-
metriSense does an effective job tracking the Z-height of a
user’s finger. The average error at the 10 mm height is 1.26
mm (std=0.99), at the 30 mm height is 1.24 mm (std=1.15)
and at the 50 mm height is 1.35 mm (std=1.06). These re-
sults indicate that SymmetriSense can effectively estimate a
user’s 3-D fingertip location, which is a powerful primitive
with only a single commodity camera.

Environmental benchmarks. The first microbenchmark is
changing the color of the screen. The surface color in our
earlier tests was black. To study the effectiveness of Sym-
metriSense on a variety of surface colors, a single user re-
peated the previous phone test on the surface colors of white,
gray, black, red, green, and blue. Figure 16a shows the X,
Y accuracies for each color in terms of the distance between
AirView’s and SymmetriSense’s locations with one standard
deviation error bars. SymmetriSense stays reasonably consis-
tent across surface colors (F5,90 = 0.240, p > 0.943), indicat-
ing that the technology is fairly robust to surface colors.

Figure 16b shows the average error over varying ambient
lighting conditions. Our earlier experiments on the phone
and the TV were done under 115 lux and 150 lux, respec-

tively, which are typical office illuminance levels [23]. To
diversify the illuminance conditions, a single participant con-
ducted tests on five conditions, i.e., in an office lighting (115
lux), in full sun in mid-afternoon (5100 lux), in a small con-
ference room with a full set of lights on (76 lux), the same
room with only the dimmer lights on (33 lux), and in com-
plete darkness. Figure 16b shows similar errors across the
conditions (F3,60 = 0.180, p > 0.909), usually ranging from
1-3 mm, indicating SymmetriSense can effectively deal with
a range of ambient lighting conditions. Our scheme does not
work in complete darkness.

Last, Figure 16c shows the average error for SymmetriSense
over varying screen brightness settings. The same user re-
peated the experiments at 0%, 50% and 100% screen bright-
ness. The screen background color was set to white. We see
that screen brightness makes little difference (F2,45 = 0.909,
p > 0.410), with low brightness giving slightly larger errors.
Regardless, the results indicate that SymmetriSense can deal
with varying screen brightness.

DISCUSSION
Limitations

Significant CPU utilization. In the camera resolution of
320 × 240, SymmetriSense shows a steady CPU utilization
around 25%. It is the full CPU utilization for a single-
threaded application on a quad-core CPU, which is the case
of our Galaxy S5. This can be alleviated by increasing smart-
phones’ computing power, exploiting parallelism, or compu-
tational offload to GPGPU or external devices [10]. As dis-
cussed in the Implementation section, the camera resolution
affects several real-time performance metrics, including: (1)
localization errors along the Y-axis and (2) the real-time lo-
calization lag resulted from the moving average filter length.
We analyze the effects on (1) in detail below.

Larger localization errors along the Y-axis. In the evalua-
tions we observed larger localization errors along the Y-axis
than the X-axis, and growing Y-axis errors near the surface’s
distal edge from the camera. It is not surprising; the tangent
function in Equation (1) takes the camera’s mounting angle
ΘHM , in addition to the variable θMY . Because the tangent
function diverges near π/2, the existence of ΘHM makes the
tangent function very sensitive to a small change of θMY . This
sensitivity increases around the surface’s distal edge where
θMY is greater. Still, ΘHM should be large enough to ensure a
sufficient view of the surface from the camera.

To alleviate this sensitivity, processing the input images at
a higher pixel-density would help. For example, in our set-
ting with a 60-inch LCD television and camera resolution of
320 × 240 pixels, a single pixel width is converted into 25
mm of Y-axis distance at the farthest edge (60 cm away from
the camera in our settings). In a future implementation with
additional CPU power available, we can quadruple the pixel
density (640× 480) so that the converted distance per pixel is
improved to 12 mm, giving smaller localization errors.

Limited FoV. SymmetriSense introduces near-surface inter-
activity only for part of the surface within the camera’s FoV;



on a Galaxy S5 phone, the FoVs are 79.69° for the front cam-
era and 62° for the back camera at maximum. Accordingly,
designing an interface on top of SymmetriSense should fol-
low a guideline such as placing interactive regions within this
area. We may further extend the interactive area with a fish-
eye lens and image deformation techniques [17].

Largely dynamic on-surface content. Our implementation
leverages moving object tracking techniques to extract the fin-
gertip from the scene. We have observed SymmetriSense per-
forms well when applied on a static surface or a display with
modest content changes. Some dynamic content is tolerated
because screen content viewed from the edge-mounted cam-
era often appears severely blurred and much dimmer. Still,
applying SymmetriSense on a display with large dynamic
contents might interfere with the finger extraction. A poten-
tial resolution is to evaluate the symmetry of a moving object
and discard non-symmetric parts because content changes
only appear on the screen side. We may also apply advanced
image processing techniques such as optical feature-based
image tracking on digital surfaces [4], or separating an ob-
ject’s reflection from a single image [35].

Battery consumption. The smartphone’s battery consump-
tion has not been a major consideration in our initial devel-
opment. We acknowledge the smartphone running heavy vi-
sion tasks requires nontrivial energy. In our implementation,
the battery drop is roughly 20% per hour if the phone is un-
plugged. Given this energy requirement, desirable applica-
tion scenarios would be an instant, short-term interaction with
a user’s primary phone, or a permanent instrumentation with
a plugged, possibly recycled, phone.

Design guidelines and considerations. While our results
show SymmetriSense can accurately localize a fingertip, a
few limitations were also brought to light. The goal of our
accuracy studies is to provide developers with a series of
best practices when using our system. For example, certain
touch- or hover-sensitive regions should be separated by a
safe distance. Alternatively, coarse-grained interactions, such
as scrolling or swiping, can be implemented over areas with
lower pin-point accuracy. For larger surfaces like TVs or mir-
rors, this may not be a big burden. This work aims to provide
a first-order evaluation of SymmetriSense with the hope that
future algorithms, uses and techniques can be refined.

Open Issues and Future Works

Deriving form-factor constants. SymmetriSense relies on a
few constants like the camera’s FoV, mounted height from the
surface, and mounted angle. The camera’s FoV angles are ob-
tainable at runtime, e.g., via Camera.Parameters APIs
of Android. The other constants can be obtained through
a one-time calibration sequence after mounting the camera
device, such as instructing the user to point to a few prede-
termined positions. In some cases, SymmetriSense may not
need to convert the fingertip’s position into real-world dis-
tance metrics, making a calibration sequence unnecessary.
For example, an application letting the user define her own
interactive regions on her dressing table mirror that respond

to her finger’s proximity to a region to execute various tasks.
The design of a runtime calibration sequence is future work.

Incorporating a touch feature. SymmetriSense’s touch
support depends on how strictly we define a touch. We ob-
served that SymmetriSense often does not clearly distinguish
a finger physically contacting the surface from one floating
very close, e.g., 1-2 mm above the surface. The reasons are
(1) low camera resolution makes such a tiny gap unclear, and
(2) a fat fingertip often obstructs the line of sight from the gap
to the camera, making the camera see the fingertip’s original
image and reflected image slightly connected. If we accept a
touch only if the fingertip physically contacts the surface (i.e.,
only when Z-height is 0.0 mm), SymmetriSense may gener-
ate non-trivial false positives. If we accept a relaxed defini-
tion of touch (e.g., if the gap is under 2 mm), we can say
SymmetriSense supports touch. This may not be a radical as-
sumption given that even capacitive touch screens sometimes
misclassify a touch upon a very closely floating fingertip.
Due to the delicate issue of touch definitions, we chose not
to justify our redefinition of a touch in this study, and focused
on pinpointing a user’s fingertip within a near-surface space.
Still, incorporating physical touches and near-surface inter-
action by a single uniform technology makes SymmetriSense
more attractive, and a rigorous extension towards touch sup-
port and/or an equivalent touch definition is our future work.

Alternate input mechanisms. While most of our evaluation
focused on locating a fingertip, we believe SymmetriSense
will work with other input objects. We informally tested pens,
styluses and gloves with our approach and the performance
was promising. Our localization scheme relies on motion and
convex hull detection, which allows for a wide variety of in-
put objects. We leave detailed analysis to future work.

CONCLUSION
In this paper, we presented SymmetriSense, a technology that
enables near-surface 3-D fingertip localization above arbi-
trary glossy surfaces, using a single commodity camera such
as one from a smartphone. Unlike the state-of-the-art, Sym-
metriSense achieves localization by using only a commodity
device which is ubiquitously available. To address the chal-
lenge using a single camera, we presented a novel technique
utilizing the fingertip’s natural reflection and the principle
of reflection symmetry. We reported the implementation de-
tails and built a working prototype. Our performance evalua-
tion shows sub-centimeter 3-D localization accuracy in most
cases, even as environmental conditions change. We believe
that SymmetriSense can serve as a platform that can instru-
ment various everyday glossy surfaces with near-surface in-
teractivity to enable new ubiquitous computing applications.
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