
FluidMem: Full, Flexible, and Fast Memory Disaggregation for the Cloud

Blake Caldwell*, Sepideh Goodarzy,
Sangtae Ha, Richard Han, Eric Keller, Eric Rozner

Department of Computer Science
University of Colorado Boulder

Boulder, Colorado, USA
first.last@colorado.edu

Youngbin Im
School of Electrical and Computer Engineering

UNIST
Ulsan, South Korea
ybim@unist.ac.kr

Abstract—This paper presents a new approach to memory
disaggregation called FluidMem that leverages the user-fault
mechanism in Linux to achieve full memory disaggregation in
software. FluidMem enables dynamic and transparent resizing
of an unmodified Virtual Machine’s (VM’s) memory footprint
in the cloud. As a result, a VM’s memory footprint can
seamlessly scale over multiple machines or even be downsized
to a near-zero footprint on a given server. FluidMem’s ar-
chitecture provides flexibility to cloud operators to manage
remote memory without requiring guest intervention, while
also supporting paging out the entirety of a VM’s pages within
its address space. FluidMem integrates with a remote memory
backend in a modular way, easily supporting systems such
as RAMCloud to harness remote memory. We demonstrate
FluidMem outperforms an existing memory disaggregation
approach based on network swap. Microbenchmarks are eval-
uated to characterize the latency of different components of the
FluidMem architecture, and two memory-intensive applications
are demonstrated using FluidMem, the Graph500 benchmark,
and MongoDB. Additionally, we show FluidMem can flexibly
and efficiently grow and shrink the memory footprint of a VM
as defined by a cloud provider.

Keywords-memory disaggregation; virtualization; cloud

I. INTRODUCTION

While fast random access memory repeatedly increases
in speed and capacity, the memory demands of applications
also continue to match or outpace availability. Whether
for genomic [1], [2], enterprise [3], storage [4], or data
analytic purposes [5], memory-intensive applications contin-
ually require large memory footprints to satisfy performance
requirements. Without sufficient memory, performance suf-
fers, or in the worst case, out-of-memory (OOM) errors
are encountered. Developers and administrators typically
have little recourse when encountering insufficient memory:
options range from reinitiating workloads, to manually ad-
justing configurations, to modifying code, and to eventually
giving up and paying for more memory capacity. None of
these solutions are ideal, and therefore decades of research
have long envisioned leveraging underutilized memory in a
cluster of servers [6], [7].

Early work to share memory suffered from poor per-
formance (e.g., Distributed Shared Memory [8], [9], [10]),

* At Brown University since completion of this work

required significant re-writes of operating systems (e.g.,
single system images [11], [12]), or required applications
to be modified to explicitly deal with remote memory
(e.g., with key-value stores [13], [14], [15]). Recent work
on memory disaggregation, however, takes a fresh look at
the problem. In the disaggregation model, computational
units can be composed of discrete quantities of memory
from many different servers. Hardware designs are being
investigated to provide this model natively [16], [17], [18],
[19], but require new datacenter infrastructure. The case for a
software approach has received renewed attention [20], [21]
due to advances in network technology. Some systems such
as Infiniswap [22] are transparent to applications and work
with existing operating systems by leveraging the Linux
swap interface. Swap suffers from a key limitation, however,
because it only provides partial memory disaggregation.

This paper introduces FluidMem, a system that provides
full memory disaggregation in software for VM-based
workloads that requires no changes in hardware design.
There are two key differences between full and partial mem-
ory disaggregation. First, with full memory disaggregation,
all memory pages are capable of being disaggregated (able
to be stored in any server). Remote paging with swap only
enables anonymous pages to be disaggregated, and therefore
many other pages such as file-backed pages (e.g., allocated
with mmap) or unevictable pages (e.g., pinned memory,
kernel memory) cannot be disaggregated. FluidMem can
support full memory disaggregation for any of a VM’s pages.
Second, full memory disaggregation can decouple memory
management from the entity using the memory, the VM,
with no requirements of guest assistance. As a result, a cloud
provider can manage the memory of tenant VMs running an
unmodified operating system (OS), without needing to co-
ordinate with the guest OS or processes running in the VM.
Together, full memory disaggregation enables a provider to
both increase and decrease memory allocation, enabling a
VM’s memory footprint to scale to many machines or be
downsized to nearly zero memory on a given server.

We have implemented FluidMem by leveraging a new
Linux kernel feature userfaultfd [23]. Intuitively, supporting
software-based full memory disaggregation would come at

a cost when compared to software-based partial memory
disaggregation approaches. In reality, this is not the case
when comparing FluidMem with swap-based approaches.
FluidMem’s performance compares favorably to swap-based
approaches because full memory disaggregation moves un-
used operating system pages out of DRAM and FluidMem
efficiently rearranges the ordering of operations in a page
fault, reducing the latency of the page fault handling critical
path. Our microbenchmarks show that page fault latencies
via FluidMem to RAMCloud are 40% faster than the NVMe
over Fabrics [24] remote memory swap device and 77%
faster than SSD swap. Our macro benchmarks demonstrate
that FluidMem outperforms swap-based remote memory
used by existing memory disaggregation implementations in
a MongoDB [4] workload and the Graph500 [25] bench-
mark. Finally, we demonstrate the scale of downsizing
possible with full disaggregation. With the memory footprint
reduced to 180 pages (720 KB), a VM can still respond and
open up an SSH shell.

In summary, this paper makes the following contributions:

• We introduce the notion of software-based full memory
disaggregation, allowing any page of a VM’s memory
footprint to be stored anywhere in the datacenter.

• We present a new design to realize full memory dis-
aggregation transparently, requiring no changes to the
VM, while allowing providers to scale or restrict a VM
memory footprint across machines.

• We implement FluidMem and compare to swap-based
schemes, showing favorable performance while en-
abling more flexible memory management. Fluidmem’s
code is available on GitHub [26].

The outline of this paper is as follows. Section II first
motivates full memory disaggregation. Section III provides
an overview of FluidMem, while Sections IV-V provide ar-
chitectural details. FluidMem is evaluated in Section VI, and
related work is covered in Section VII before concluding.

II. MOTIVATING SOFTWARE-BASED FULL MEMORY
DISAGGREGATION

Resource disaggregation should be transparent to the soft-
ware running on the disaggregated system. This transparency
model matches the deployment model in cloud computing,
which decouples the provider running the infrastructure from
the tenant running its software. With disaggregation, a cloud
provider can assemble computing resources to an exact
tenant specification, and then provision complete control of
software using those resources to the tenant. Providers can
allocate assembled resources as a one-time build, or even
dynamically change the assembly by adding more memory,
CPU, and storage. Given the promise of such flexibility,
industry and academia alike are researching new hardware
architectures that can efficiently support this model of full
disaggregation [16], [17], [18], [19].

Our goal is to provide full memory disaggregation in
software. That is, rather than re-architecting system hard-
ware to build systems on-demand from disparate resources,
we instead utilize a software layer to provide the same
abstraction with resources pooled across a collection of
commodity servers. Today, virtualization software runs on a
single physical server to provide the abstraction of a machine
built on-demand for a given tenant. With full memory
disaggregation, the virtualization layer extends usage beyond
a single physical server to include memory from multiple
machines. This approach enables cloud providers to allocate
memory to a tenant’s VM and then dynamically manage the
assignment of the VM’s memory in a deterministic fashion
to physical resources throughout the cloud infrastructure.

To motivate the need for a new approach to memory
disaggregation, we step back and discuss the leading al-
ternative to achieve transparent memory disaggregation –
remote paging with swap [22], [27]. The swap mechanism
moves pages between main memory and disk, and its design
provides a convenient translation layer between memory
and block sectors. By assigning a block device to reside
over a network, swap-based memory disaggregation enables
remote memory use without modifying VMs. The key
limitation, however, is that it is difficult to support full
memory disaggregation with swap. First, under low memory
conditions, file-backed memory pages are written to the
original filesystem. The same functionality occurs for pages
in memory-mapped regions created by the mmap system call,
commonly used to store file executables in memory and by
some in-memory databases [28]. There is no capability to
store these pages in swap space. Further, swap limits the
pages that can be successfully swapped out, even if they
are unused. Pages belonging to the kernel are one such
category of non-swappable pages. There are also unevictable
pages, such as pages pinned by the mlock system call.
With swap-based disaggregation approaches, these pages are
unable to utilize remote memory, and thus swap-based mem-
ory disaggregation approaches cannot provide full memory
disaggregation.

Additionally, swap-based approaches are unable to com-
pletely decouple memory management from the VM using
the memory without explicit VM support. For example, there
is no way to reduce a VM’s local memory footprint on a
server at any given time. Such functionality can be realized
with VM ballooning (see Section VII), but this requires VM
modification and cooperation. Without ballooning, swap-
based memory disaggregation doesn’t activate until there
is high memory pressure on a machine, minimizing op-
portunities to proactively disaggregate memory. Typically
swap replaces pages based on LRU information, meaning
it is agnostic to a VM’s current footprint and cannot easily
implement a provider’s or application’s custom memory
usage policy. This limits the ability of a provider to flexibly
manage memory allocations.

Next, we motivate why FluidMem supports full memory
disaggregation for VMs. With the advent of lightweight
VMs [29], VMs can be put to sleep often (and resumed on a
whim), scaled to support microservice models, or migrated
quickly. Today, providers like Amazon provision lightweight
VMs to house transient workloads like serverless functions
with Firecracker [30]. On the opposite end of the spectrum,
VMs may still represent their large, monolithic ancestors,
with a specific VM requiring a large memory footprint,
or supporting an application that aims to process large
amounts of data in memory. FluidMem seamlessly enables
full memory disaggregation for all of these deployment
scenarios, even in cases were hypervisor swap is disabled,
as in Firecracker [31] deployments.

Finally, one could imagine an approach that seeks full
memory disaggregation using existing (swap-based) ap-
proaches. In particular, if a VM is run inside a container, then
an approach like Infiniswap could manage the memory of the
container (and thus the VM) through swap. One downside
is other functionalities that support the VM (e.g., QEMU)
will be loaded within the container and will be grouped
within the container’s memory. This is both dangerous, as
critical memory supporting virtualization can be swapped
out, and wasteful, as extra memory beyond what is used by
the application becomes disaggregated. One might consider
this suitable, but we argue that a design to realize full
memory disaggregation in software should match the model
as cleanly as possible.

III. FLUIDMEM ARCHITECTURE

We aim to create a software layer that enables full memory
disaggregation on existing computer systems. Rather than
co-opting the swap interface, we find a more efficient
path in Linux memory management that naturally allows
full memory disaggregation and granular management of
hypervisor memory. In this way, memory pages can natively
be stored in a key-value store on a remote server.

Three key questions need to be answered to collectively
define how FluidMem works. We highlight these below
and then describe the detailed structure and mechanics
of FluidMem in subsequent sections. An overview of the
FluidMem system architecture is illustrated in Figure 1.
How can FluidMem manage memory without explicit
VM support? Transparency to tenant VMs is an important
goal in memory disaggregation for the cloud. While VMs
(including the operating system) are typically defined by
the user, the hypervisor emulator (e.g. QEMU) and hyper-
visor kernel (e.g. Linux/KVM) are managed by the cloud
operator. Since minimal changes to the hypervisor stack
will be tolerated by the cloud provider for reliability and
security reasons, we have chosen to define an interface of
registering memory regions with FluidMem that is analogous
to registering local memory from the perspective of the
hypervisor.

FluidMem via
Hot Plug

All FluidMem
Memory

FluidMem Page
Fault Handler

Key-Value
Store

Resizable LRU
Buffer

Kernel Page Fault
Handler

Userfaultfd Page
Fault Handler

Linux KVM
Hypervisor

Unmodified VMs

Remote Memory

Local Memory

User Space

Kernel Space

Cloud Infrastructure

Figure 1: FluidMem Architecture

FluidMem can manage memory requested by the hyper-
visor in two basic modes: a normal VM can add extra Fluid-
Mem memory via memory hotplug (left VM in Figure 1) or
a VM can be started with all its memory registered with the
FluidMem page fault handler (right VM in Figure 1). VMs
backed with FluidMem memory are completely unmodified.
Hotplug is natively supported in Linux, Windows, and
FreeBSD guest VMs through QEMU [32], which means
memory can be added to a VM at any time, even if the VM
did not anticipate using additional memory at boot time.

The guest kernel views FluidMem memory as if it were
standard physical memory. VM memory that is not registered
with FluidMem is serviced by the standard kernel page fault
handler and uses DRAM memory local to the hypervisor.
In FluidMem-registered regions, memory accesses will pass
through the FluidMem page fault handler and be routed to
the appropriate location in a remote key-value store. Full
memory disaggregation is enabled when all VM memory
has been registered with VM.
How can FluidMem achieve transparent page fault
handling? As with swap, FluidMem implements a page
fault mechanism that allows memory accesses to be fast
(when accesses are in local memory) but also supports the
use of remote memory in a key-value store. In contrast
to swap, FluidMem leverages the userfaultfd feature in the
Linux kernel [23], supported since Linux 4.3 and originally
designed to support VM live migration. This allows us to
directly tap into the kernel’s page fault handling mechanism,
and because of this, we can disaggregate all memory pages,
unlike swap. Further, as we directly handle the page faults
in user space, there are a variety of optimizations that are
immediately possible. In particular, no additional context
switch is needed for user space network transport protocols
like RAMCloud. Additionally, libraries such as Boost and
the Zookeeper client can easily be linked in to build indexing
structures or synchronize cluster state.
How can FluidMem dynamically manage the allocation
of local and remote memory resources? A key motivation
of full memory disaggregation is that it allows the cloud
provider to dynamically manage the memory of a tenant VM

transparently. FluidMem uses the userfaultfd mechanism
to track all FluidMem-registered memory. Unlike swap,
userfaultfd is invoked on the first page fault of every page,
giving the user space page fault handler the ability to
identify all pages belonging to a VM. An administrator
can then manage VM memory allocations in a fine-grained
manner, dynamically mapping VM memory between local
and remote memory pages. The userfaultfd capability allows
the local memory buffer to be actively sized up or down to
balance the demands of the VM’s workload with the resource
constraints or policies of the cloud operator.

Cloud providers can further benefit from the flexibility
that comes from handling memory paging in user space to
rapidly deploy a variety of customizations needed for their
infrastructure or specific use cases. Some examples are page
compression or replication across remote servers.

IV. EXPANDING TO REMOTE MEMORY

In this section, we describe how FluidMem registers
remote-backed memory and supports storing memory pages
in a key-value store.

FluidMem’s scheme for expanding to remote memory is
implemented in QEMU by wrapping the allocation of a guest
VM’s memory with an allocation that also registers the mem-
ory region with the FluidMem user space page fault handler.
Registration is accomplished via the userfaultfd system
call, which returns a file descriptor that is monitored for
page fault events. The size of the memory allocation is
the amount of physical memory that appears in the guest
VM. This wrapper function is provided in a user functions
library component of FluidMem that is dynamically linked
to QEMU. Other hypervisors besides QEMU could become
FluidMem-enabled by linking the same library.

FluidMem interfaces with key-value stores via a generic
API that supports partitions and allows multiple VMs to
share the same key-value store. For networked key-value
stores such as RAMCloud [33] and Memcached [34] that
natively support partitions, we use their user space clients for
preparing PUT and GET requests. The 4 KB page contents
serve as the value portion of the request and the key is a 64-
bit integer matching the first 52 bits of the virtual memory
address used by the faulting application (e.g. QEMU). This
is adequate to uniquely represent each 4 KB page in the 64-
bit virtual address space. To support other key-value stores
without partition support, we use the remaining 12 bits to
index a “virtual partition”. The index is created using the
process PID, a hypervisor ID, and a nonce, where global
uniqueness is ensured by a replicated and globally consistent
table stored in Zookeeper [35].

V. FAST HANDLING OF REMOTE PAGE FAULTS

This section describes in greater detail the path followed
by a page fault through the FluidMem page fault handler
and optimizations made to reduce page fault latency.

A. User space page fault handler

The process that is responsible for handling page faults
in FluidMem runs entirely in user space and is called
the monitor process. Its primary responsibility is to watch
for page faults and resolve them before waking up the
faulting process. The monitor process waits on a list of file
descriptors (corresponding to registered userfaultfd regions)
for events indicating a userfaultfd page fault. The list of
descriptors is extended whenever a new region is registered
(VM started) and shrunk when regions become invalid (VM
shut down). The memory region initially contains no mapped
pages so any access to an address within the range will
trigger a page fault. Below in Figure 2, we show a trace of
the components involved in handling a first-time access.

Figure 2: First page access handling critical path (red) begins
when the guest is halted (1) as a page fault occurs (2).
The monitor process is notified of the fault via a userfaultfd
event (3). With FluidMem’s pagetracker feature, the monitor
process only has to make a UFFD_ZERO ioctl for the
zero-filled page (4) before waking up the QEMU guest (5).
Asynchronous (blue) page eviction (6) is accomplished by
moving the page out of the VM via UFFD_REMAP (7) and
writing the page to a key-value store (8).

When a QEMU/KVM virtual machine accesses an address
without a corresponding page mapping (i.e. when the VM is
booting), the vCPU thread within the process must be halted
until the fault can be resolved. This appears as a page fault to
the VM at the guest virtual address, but the hypervisor will
see the page fault at a virtual address belonging to the VM’s
QEMU process and will run userfaultfd-specific handling
code before sending an event to the monitor process via a
file descriptor. On notification of a page fault, the monitor
receives the faulting address and the process PID belonging
to the VM. The monitor keeps a list of already seen pages
to avoid reads from the remote key-value store for first-time
accesses. Instead, the fault is resolved by placing the special

zero-filled page1 at the faulting address and then resuming
execution of the vCPU thread.

The monitor maintains an LRU list to manage page
evictions, where the size of the list determines the number
of pages held in DRAM for all VMs. Evictions come from
the top of the LRU list and will be triggered by the monitor
process when the number of pages reaches the configured
maximum size and another page fault arrives. Note that the
LRU list is only updated when a page is seen by the monitor
process, which only happens on first access and after an
eviction. A future optimization would be to trigger faults
for pages not yet evicted to the key-value store. At present,
the internal ordering of the list does not change.

An advantage of using the built-in userfaultfd kernel fea-
ture is that pages in userfaultfd regions can be transparently
managed like other kernel pages. For example, in emergency
situations, it would be possible for VM pages to be paged
to swap space on the hypervisor without intervention by the
monitor process. We assume that the remote key-value store
determines if its pages should remain resident in DRAM.
RAMCloud, for example, pins memory to ensure that it
is not paged out. On the other hand, it may be desirable
to allow remote memory to spill over to disk, NVRAM,
or another storage medium. To perform evictions, we use
a proposed UFFD_REMAP operation with userfaultfd to
remove a page from the VM and place it in a user space
buffer by changing page table entries2. The monitor process
can then send the page to the key-value store.

When a page is accessed for the second time after having
been evicted to a key-value store, a slightly different path is
taken. This time the monitor process notes that the faulting
page address has been seen before, so it issues a read to
the key-value store. After a successful read, the page is
copied into the VM and the vCPU woken up. Our early
technical report on FluidMem contains more details on how
the monitor process handles page faults [36].

B. Optimizations to page fault handling

This section describes various performance optimizations
to FluidMem’s page fault handling.

Asynchronous writeback: Asynchronous writeback to
the key-value store is an important optimization made to
FluidMem because evicted pages do not need to be written
to the key-value store immediately as long as they are not
requested by the guest VM. Rather than waiting for the
write to complete before handling the next page fault, the
critical path in the monitor only evicts the page from the
VM and puts the page on a write list before moving on
to the next fault. A separate thread periodically flushes the

1The zero page within the kernel is a copy-on-write page that returns
all zeroes on read, but on a subsequent write fault, it will trigger a regular
page fault to allocate a normal empty page allocation.

2Our patches have been submitted to the Linux kernel mailing list for
upstream inclusion and work is ongoing to merge them into mainline Linux.

write list to the key-value store when its size has reached a
configured batch size of pages or a stale file descriptor has
been found. We leverage RAMCloud’s multi-write operation
to write batches of pages belonging to the same userfaultfd
region. This optimization is most beneficial when slower
network transports are used for the key-value store such as
with TCP with Memcached.

In a related optimization, the page fault handler can steal
pages from the pending write list to resolve a page fault
and shortcut two round trips to the remote key-value store.
If a write of a page is in-flight when the fault handler gets
another fault for the same address, there is no other choice
than to wait for the write to complete. However, the critical
path will resume immediately once the pending write has
completed.

Asynchronous reads: Other than when a VM first boots
up, reads are most often accompanied by an eviction to
maintain a constant memory footprint. Even though eviction
with UFFD_REMAP moves a page from inside the VM to
outside by only modifying page table entries and not copying
the page contents, it needs to synchronize processor page
tables for KVM guests using interprocessor interrupts. In our
microbenchmarks, we found this call took 4-5 µs. Combined
with the observation that a page read from RAMCloud
involved waiting (10 µs) for the network transport, we saw
the opportunity to interleave the eviction operation with
the network read. Both RAMCloud and Memcached read
operations were split into top and bottom halves, making use
of their respective asynchronous API calls. This optimization
reduced overall CPU usage by running UFFD_REMAP at a
time when the vCPU thread was already suspended, and the
UFFD_REMAP call returned after only 2 µs.

The asynchronous optimizations above are similar to the
optimizations already present in the kernel swap interface
where kernel threads decouple eviction from the read critical
path.

Zero-copy semantics: A benefit that stems from operat-
ing entirely in one context (user space or kernel space) is
that data copy operations can be avoided. The UFFD_REMAP
operation demonstrates this, but it is not always faster than
UFFD_COPY because of the synchronization required. We
took care throughout the page fault handling code to avoid
copies and reuse buffers. Such copying is necessary when
using the swap interface because a memory page must be
put into a block device request and traverse several layers
of kernel code before reaching a custom kernel module to
use remote memory.

This benefit has not fully been realized in our implemen-
tation because RAMCloud does not use RDMA network
transport and incurs a copy into the Infiniband network
buffer. Substituting RAMCloud for an RDMA key-value
store such as FaRM [13] or HERD [37] would further reduce
FluidMem’s page fault latency.

VI. EVALUATION

This section examines the performance of FluidMem.
We first describe the experimental platform and comparison
points made to current memory disaggregation strategies.
Next, we run microbenchmarks of page fault latency within
a VM, then investigate code contributions to latency and
performance improvements from our optimizations. Lastly,
we demonstrate FluidMem’s performance with the Graph500
benchmark [25] and the document store MongoDB [4].

A. Test platform configuration

These experiments were conducted on a cluster of dual-
processor Intel Xeon E5-2620 v4 servers running the Linux
4.20 rc7 kernel and CentOS 7.1 distribution. An FDR Infini-
band (56 Gb/s) network connected the nodes with Mellanox
ConnectX-3 cards. The FluidMem with RAMCloud and
NVMe over Fabrics (NVMeoF) [24] tests used native In-
finiband transport and the FluidMem with Memcached [34]
tests were run with the IP over IB transport.

RAMCloud is given 25 GB of memory and is running
on a different server than the one running the test VM. The
replication feature with RAMCloud was not turned on, but
replication only impacts key-value writes. Since FluidMem
carries out writes asynchronously, the overall impact on page
fault latency would be minimal.

To understand FluidMem’s performance relative to sys-
tems like Infiniswap [22], we used a swap device backed
by remote DRAM on another machine with NVMe over
Fabrics (NVMeoF). Both NVMeoF and Infiniswap enable
swap-based memory disaggregation using RDMA, where
the NVMeoF project has gained acceptance into the Linux
kernel as a successor to the NBDx block device [38]. Since
Infiniswap requires building kernel modules for each new
kernel release and has code specific to kernel versions, it is
not clear how it will be used on cloud servers that continually
need to be updated with security patches. The Infiniswap
block device did not have kernel modules that would work
with Linux 4.20, so we used swap backed by local DRAM in
our evaluations as a lower bound for swap-based approaches.

NVMeoF’s predecessor, NBDx, is compared to Infin-
iswap’s RDMA network block device in [22] with bandwidth
results favorable to Infiniswap. The reason given for this
difference was high remote CPU usage, which is reduced
with Infiniswap. We measured CPU usage of the remote
NVMeoF system while running pmbench [39] and observed
that peak kernel CPU usage for NVMeoF never exceeded
20%. Thus, we do not expect that our latency benchmarks
were limited by high CPU usage. Nonetheless, Infiniswap to
a remote machine would be significantly slower than swap
backed by local DRAM with no network latency.

The NVMeoF block device is made available on the hy-
pervisor by loading a kernel module that connects to the re-
mote target via Infiniband. The NVMeoF storage target was

a different server accessible via FDR Infiniband. The target
device size was 10 GB of DRAM via /dev/pmem0 [40].

B. Latency micro-benchmarks

To better understand the raw page fault latency seen by
different FluidMem backends and how they influenced ap-
plication performance in Section VI-D, we measured access
latencies using pmbench [39] within a VM. Our goal using
pmbench was to measure access microsecond latencies with
minimal overhead and to examine their distributions, which
are shown in Figure 3. The working set size (WSS) was set
by a 4 GB allocation from pmbench. First, pmbench warms
up the cache by accessing all pages once, and then randomly
makes 4 KB requests at a 50% read to write ratio for 100 s.

For the swap cases, a 20 GB block device backed by
either DRAM, NVMeoF, or SSD was made accessible to
the VM as swap space in addition to 1 GB of DRAM.
When FluidMem was used, we registered the VM’s memory
with the FluidMem page fault handler on boot, meaning all
memory accesses were served by FluidMem. The monitor
process enforced a 1 GB LRU list size, so up to 1 GB of
pages could reside in DRAM before any pages were evicted.
An additional 4 GB of hotplug memory was added, raising
the capacity to 5 GB, but maintaining 1 GB in DRAM.

Figure 3 shows each backend’s cumulative distribution
function (CDF) of page fault latencies. The average la-
tency is lower with DRAM-backed FluidMem compared to
DRAM-backed swap. For remote memory configurations,
latency is reduced by 40% with FluidMem over NVMeoF
with swap. The similarity between DRAM and RAMCloud
backend performance with FluidMem indicates that the
optimizations were effective for hiding network latency.

The CDFs highlight differences in the page fault handling
paths used by FluidMem and swap. Any page fault that took
less than 10 µs must have been cached in DRAM (slightly
over 25% from the local to remote memory ratio). The early
part of the CDF reflects latencies from page faults that do
not require a network round trip to resolve. For FluidMem,
these accesses are represented in the flat section of the CDF
that ends before 10.5 µs. In the swap case, there are multiple
flat parts corresponding to a more complex page fault path.
In all cases, the rise to 100% starts between 10 and 100 µs
and is a reflection of the performance characteristics of the
remote memory backend. We see similar remote memory
performance between FluidMem and swap scenarios.

C. FluidMem optimizations

FluidMem has the built-in ability to profile individual
components of the page fault handling path. We used this to
profile key sections of FluidMem code during synchronous
page fault handling (without the optimizations in Table II).
Results from this analysis are shown in Table I with the
RAMCloud backend. A takeaway is that reducing the time
waiting for network read and write operations holds the most

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

F
ra

c
ti
o
n
 o

f
p
a
g
e
 f
a
u
lt
s
 i
n
 V

M

Latency (µs)

Read
Write

(a) FluidMem DRAM (24.84 µs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

F
ra

c
ti
o
n
 o

f
p
a
g
e
 f
a
u
lt
s
 i
n
 V

M

Latency (µs)

Read
Write

(b) FluidMem RAMCloud (24.87 µs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

F
ra

c
ti
o
n
 o

f
p
a
g
e
 f
a
u
lt
s
 i
n
 V

M

Latency (µs)

Read
Write

(c) FluidMem Memcached (65.79 µs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

F
ra

c
ti
o
n
 o

f
p
a
g
e
 f
a
u
lt
s
 i
n
 V

M

Latency (µs)

Read
Write

(d) Swap DRAM (26.34 µs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

F
ra

c
ti
o
n
 o

f
p
a
g
e
 f
a
u
lt
s
 i
n
 V

M

Latency (µs)

Read
Write

(e) Swap NVMeoF (41.73 µs)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

F
ra

c
ti
o
n
 o

f
p
a
g
e
 f
a
u
lt
s
 i
n
 V

M

Latency (µs)

Read
Write

(f) Swap SSD (106.56 µs)

Figure 3: CDF of latencies measured with pmbench. The plots are arranged row-wise by mechanism (FluidMem vs. Swap).
Average latencies for each backend are shown in parenthesis.

potential for decreasing overall latency. FluidMem’s cache
management functions make relatively small contributions
to total latency as compared to network operations. Note
that the 99th percentile latency for UFFD_REMAP is high
because the operation requires an interrupt to be sent to all
CPUs to flush the TLB entry.

To examine application performance implications, we
measured the time between entry and exit points in the
kernel’s page fault handler when faults are generated by a
simple test program that reads from and writes to a memory
region. Memory can be accessed sequentially or randomly.
The program was linked with FluidMem’s libuserfault li-
brary, so there was no involvement of a virtualization layer.
We used the Linux perf command to measure the time
the kernel took to resolve each page fault with various
optimization enabled. Average latencies with RAMCloud are
shown in Table II. The improvements come from enabling
the monitor process to hide the network latency by inter-
leaving asynchronous operations in the page fault handling
path. An improvement from baseline to fully-optimized with
DRAM indicates that interleaving the userfaultfd system
calls was helpful even without a network latency component.
Comparing latencies between DRAM and RAMCloud show
that a network key-value store incurs a 20-40% overhead.

D. Application Use Cases

This subsection describes use cases of standard appli-
cations running on FluidMem and demonstrates the per-
formance improvement from expanding a VM’s physical
memory in contrast to only increasing swap space.

Table I: Latencies of key parts of FluidMem code involved
when the page is accessed (units: µs).

Code path Latency
Avg Stdev 99th

UPDATE_PAGE_CACHE 2.56 0.25 3.32
INSERT_PAGE_HASH_NODE 2.58 1.26 8.36
INSERT_LRU_CACHE_NODE 2.87 0.47 3.65
UFFD_ZEROPAGE 2.61 0.44 3.51
UFFD_REMAP 1.65 2.57 18.03
UFFD_COPY 3.89 0.77 5.43
READ_PAGE 15.62 31.01 20.90
WRITE_PAGE 14.70 1.52 17.45

Table II: Average page fault latencies measured from the
application with various FluidMem optimizations (units: µs).

FluidMem with DRAM FluidMem with RAMCloud
Optimization Sequential Random Sequential Random
Default 27.25 28.15 66.71 58.70
Async Read 25.26 25.00 51.08 49.33
Async Write 23.67 30.26 42.88 43.40
Async Read/Write 21.30 24.37 29.47 29.20

Applications that load large datasets or indexes into
memory will benefit greatly from FluidMem when the
application’s WSS is free to grow beyond local DRAM and
expand to remote memory. While some applications can
easily partition their working set into discrete chunks and
spread them across the aggregate DRAM of multiple nodes,
the heterogeneity of cloud applications means that this
assumption cannot always be made. If the capability to par-
tition data does not exist without explicit refactoring of the
application’s code, or if a partitioning method is not known
beforehand, FluidMem can still improve performance by

 0

 15

 30

 45

 60

DRAM RAMCloud memcached DRAM NVMeoF SSD

FluidMem Swap

T
ra

v
e
rs

e
d
 E

d
g
e
s
 p

e
r

S
e
c
o
n
d
 (

m
ill

io
n
s
)

(a) WSS 60% of DRAM (scale factor 20)

 0

 5

 10

 15

 20

DRAM RAMCloud memcached DRAM NVMeoF SSD

FluidMem Swap

T
ra

v
e
rs

e
d
 E

d
g
e
s
 p

e
r

S
e
c
o
n
d
 (

m
ill

io
n
s
)

(b) WSS 120% of DRAM (scale factor 21)

 0

 5

 10

 15

 20

DRAM RAMCloud memcached DRAM NVMeoF SSD

FluidMem Swap

T
ra

v
e
rs

e
d
 E

d
g
e
s
 p

e
r

S
e
c
o
n
d
 (

m
ill

io
n
s
)

(c) WSS 240% of DRAM (scale factor 22)

 0

 5

 10

 15

 20

DRAM RAMCloud memcached DRAM NVMeoF SSD

FluidMem Swap

T
ra

v
e
rs

e
d
 E

d
g
e
s
 p

e
r

S
e
c
o
n
d
 (

m
ill

io
n
s
)

(d) WSS 480% of DRAM (scale factor 23)

Figure 4: Graph500 performance with working set sizes (WSS) from 600 MB (scale factor 20) to 4.8 GB (scale factor 23).
The overhead of FluidMem page faults is 2.6% in (a). The benefit of storing OS pages in remote memory with FluidMem
is most pronounced in (b) when WSS is 120% of DRAM. At higher scale factors (c) and (d), the performance of FluidMem
RAMCloud exceeds swap to NVMeoF, but choices in page eviction penalize FluidMem DRAM compared to swap.

allowing more of the dataset to reside in DRAM. FluidMem
provides an alternative solution to loading these datasets into
memory that doesn’t require engineer development effort.

1) Graph500: We chose the Graph500 benchmark to
evaluate how page fault latency on various key-value stores
affected overall application performance in a VM capable
of full memory disaggregation. Completing a breadth-first
search (BFS) traversal is generally a memory-bound task due
to irregular memory accesses [41]. For this reason, we used
the sequential reference implementation of Graph500 [25].
We note that there are many prior works on parallel BFS on
distributed clusters [41], but the focus of this paper is on full
memory disaggregation in the cloud, limited to individual
VMs, not a distributed shared address space.

All experiments were run on a QEMU/KVM virtual
machine with 2 vCPUs and 1 GB of local memory on
the hypervisor. For swap, this meant a memory capacity
of 1 GB for the VM. Block devices backed by different
mediums were configured as swap space within the VM.
The libvirt configuration to present the block device to the
VM used the virtio driver with caching mode set to

“none”, meaning O_DIRECT semantics were used and the
host’s page cache was not involved. This setting was critical
for an accurate comparison between swap and FluidMem.
With the disk caching mode set to “writeback”, writes
to the swap device would be buffered in the hypervisor’s
cache. Using “writeback” actually made swapping to DRAM
slower because of the extra caching layer. For FluidMem,
1 GB of DRAM was used by fixing the LRU list size before
adding 4 GB of remote memory via hotplug. Swap was
turned off for FluidMem tests.

Figure 4 shows the results of the Graph500 benchmark
run on VMs configured to use FluidMem or swap, each
with three different backends. The benchmark creates a
graph in memory of configurable size and then performs
64 consecutive BFS traversals. The scale factor controls the
size of the graph which in our evaluation ranges from 1 GB
(scale factor 20) to 5 GB (scale factor 20). Performance is
measured using the metric (millions of) traversed edges per
second (TEPS). For each configuration, the harmonic mean
of TEPS for the 64 trials is reported in Figure 4.

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000 2500 3000 3500

1
K

B
 r

e
c
o

rd
 r

e
tr

ie
v
a

l
la

te
n

c
y
 (

µ
s
)

Runtime (Seconds)

1GB Cache (1040 us avg.)
2GB Cache (905 us avg.)
3GB Cache (631 us avg.)

(a) Read latency with swap (NVMeoF)

 0

 500

 1000

 1500

 2000

 0 200 400 600 800 1000 1200 1400 1600 1800

1
K

B
 r

e
c
o

rd
 r

e
tr

ie
v
a

l
la

te
n

c
y
 (

µ
s
)

Runtime (Seconds)

1GB Cache (534 us avg.)
2GB Cache (494 us avg.)
3GB Cache (463 us avg.)

(b) Read latency with FluidMem (RAMCloud)

Figure 5: Latency of YCSB 1 KB read-only workload for MongoDB with WiredTiger storage engine. When cache size
exceeds DRAM capacity, the storage engine is not capable of achieving a stable working set when only given swap space
via NVMeoF. When remote memory performance is comparable (Figure 3), FluidMem achieves significantly lower average
latencies because it transparently provides the storage engine with native memory capacity.

The purpose of varying the scale factor was to evaluate
performance when the application WSS fits entirely within
DRAM (600 MB for scale factor 20) to when the WSS
necessitates storing a majority of frequently used pages
remotely (scale factor 23 uses 4.8 GB). The results in
Figure 4 can generalize to a larger VM with a higher
scale factor by comparing the percentage of WSS that can
remain in DRAM. Note that the memory footprint of the
OS is approximately 300 MB of DRAM at boot (shown
in Table III), which would become a smaller percentage
memory overhead with a larger VM.

Figure 4a shows the harmonic mean TEPS at scale factor
20. Since this test involved purely local accesses, it was
used to assess the overhead of FluidMem’s full memory
disaggregation. Since FluidMem traps to user space and
performs a hash lookup for each page it hasn’t seen before,
the cost of the kernel triggering a “minor page fault” with
FluidMem is slightly higher than with swap. At scale factor
20, the number of minor page faults was about 150,000, but
this only resulted in a 2.6% slowdown with FluidMem.

The FluidMem configurations do significantly better than
swap-based ns at scale factor 21 where the WSS occupies
120% of local memory (Figure 4b). The large performance
difference is primarily because FluidMem allows more un-
used kernel pages to be removed from DRAM and replaced
with useful application pages. Another aspect of Figure 4b
that has promise for cloud datacenters with standard Ethernet
networks is that the Memcached backend for FluidMem
performs better than swap backed by NVMeoF and SSD.
This is due to the increased amount of application pages
in local memory as discussed above, but the raw latency of
FluidMem with Memcached is still faster than swap with
SSD (Figure 3).

At scale factor 22, FluidMem with RAMCloud outper-
forms swap with NVMeoF, consistent with lower remote
memory latencies measured in Figure 3. However, the

DRAM backed storage via swap is slightly faster than
DRAM through FluidMem. Since we have shown above
that page fault latencies for FluidMem backed by DRAM
are lower than swap backed by DRAM, we believe the
difference is a result of the kswapd process within the
guest being better able to pick candidates for eviction using
the kernel’s active/inactive list mechanism. This is a current
limitation of our LRU list design mentioned in section V-A.

The same relative comparisons hold at scale factor 23
(WSS 480% of local memory). While the ability to choose
pages to evict may give swap an edge when network latency
is low (e.g. DRAM), the FluidMem page fault handler
effectively hides network latency with RAMCloud compared
to swap with NVMeoF.

Beyond scale factor 23, where the WSS takes up more
than 480% of DRAM, Graph500 will still run to comple-
tion. However, other applications could impose timeouts on
certain operations that will be exceeded when using remote
memory. Infiniswap only explored applications with 50%
of their working set in memory and cited problems with
thrashing and failing to complete beyond that split of remote
memory. Applications such as Spark likely have timeouts
that cause such failures and changing the application code to
account for the remote memory delay could resolve them. In
addition to the 480% WSS case, we explored an analogous
situation, but at the opposite extreme, where a VM is booted
with a DRAM footprint of fewer than 200 pages (1 MB).
This is discussed further in Section VI-E

2) MongoDB: Not all applications can take advantage of
extra memory through the swap interface which is necessary
to benefit from remote memory through systems such as
Infiniswap. Full memory disaggregation through FluidMem
allows applications such as MongoDB to efficiently use
remote memory even if applications have their own cache
management system that is incompatible with swap.

VM footprint
(pages)

VM footprint
(MB) Response to SSH Response to ICMP

Revived by
increasing
footprint

After startup 81042 316.570 Yes Yes N/A
Max VM balloon size 20480 64.750 Yes Yes N/A
FluidMem (KVM) 180 0.703 Yes Yes Yes
FluidMem (KVM) 80 0.300 No Yes Yes
FluidMem (full virtualization) 1 0.004 No No Yes

Table III: Summary of the effects of reducing VM footprint to 1 page

MongoDB is a document store commonly used for cloud
applications that facilitates fast retrieval of data stored on
disk by caching its working set of documents in memory.
MongoDB has two storage engine options, mmapv1 that
uses the memory-mapping system call mmap to let the
kernel manage which pages are cached in memory, and
WiredTiger that uses an application-specific cache and the
kernel’s filesystem cache. We only evaluate WiredTiger here.

One of the limitations of swap is that it cannot be used
to store memory-mapped pages. When an application uses
mmap with remote memory via swap, the performance is
the same as without remote memory because the operating
system will write out pages from the memory mapping to
disk, not to remote memory via swap. While MongoDB has
deprecated the mmapv1 storage engine, emerging data stores
continue to use mmap [28]. We point out that FluidMem can
benefit such applications that continue to use mmap.

We chose the read-only workload from the Yahoo Cloud
Serving Benchmark (YCSB) suite [42], for our evaluation
of MongoDB. With this workload, data will be cached in
memory until evicted to make room for newly read records
(1 KB each). For swap, the MongoDB server is run on a
VM with 1 GB of local DRAM. The swap device is backed
by either DRAM on a remote server via /dev/pmem0,
an NVMeoF target device, or a local SSD partition. For
FluidMem, the VM was created with 4 GB of memory, but
it was limited to a DRAM footprint of 1 GB by the LRU list.
Swap space was turned off for tests with FluidMem. For all
test configurations, transparent huge pages and NUMA were
disabled. Since, for swap configurations, we used remote
memory rather than a local hard drive, vm.swappiness
and disk readahead were set to 100 and 0, respectively.

YCSB workload C (read-only) was run from the same
VM to reduce the impact of network latency on the results.
Since full memory disaggregation most directly applies to
a single server, the evaluated MongoDB configuration was
not sharded across several servers. A VM with 3 vCPUs was
used, where the kernel was free to schedule the MongoDB
and YCSB processes on any vCPU. Before initiating the
measured experiment, dataset records were inserted into the
MongoDB store by YCSB. Once loading was complete, the
storage engine used approximately 5 GB on a local SSD. To
ensure that the WiredTiger memory cache and kernel page
cache had been flushed, the VM was rebooted between tests.

The time courses of read latency for the WiredTiger
storage engine on swap backed by NVMeoF and FluidMem
backed by RAMCloud are shown in Figures 5a and 5b,
respectively. The latency measurements represent the time it
takes to read a 1 KB record from MongoDB. Some of the
records will require disk I/O, while others can be read from
the in-memory cache. While average latency decreases for
both remote memory configurations with increasing cache
size, the WiredTiger storage engine is unable to smoothly
take advantage of swap space as extra capacity for the
workload. Regardless of the cache size configured, the
storage engine has difficulty establishing a stable working
set in memory. The poor interaction between the WiredTiger
storage engine’s memory cache and kswapd leads to 36-
95% higher average latencies than with FluidMem.

E. Full memory disaggregation

Table III demonstrates FluidMem’s ability to perform
full memory disaggregation by minimizing a VM’s memory
footprint. Virtual machines may remain on, but unused,
and cloud providers could benefit from a mechanism to
repurpose idle memory capacity for increasing density. Users
may opt for a billing model that allows them to keep VMs
reachable, with the capacity to scale up on demand.

Without FluidMem enforcing the LRU list size, a VM
will consume 317 MB of memory just from booting to a
command prompt. This memory will be resident in DRAM
and the usage will grow over time up to the allotted memory
size of the VM. An alternative for reducing the memory
footprint is KVM’s balloon driver for reclaiming guest
pages, but the driver reaches its maximum size when the
VM footprint is still 64 MB. In contrast, FluidMem’s LRU
list can be resized to enforce a near-zero footprint. When
the footprint is reduced to 180 pages (0.7 MB), the VM is
still able to accept SSH logins before a timeout. Even part
of the ssh binary will have to be stored in FluidMem, along
with all libraries and kernel code needed to complete a user
authentication. Afterward, if the LRU size is increased, the
VM will instantly return to normal responsiveness.

At only 80 pages, the VM can still respond to an ICMP
echo request every 1 s. Within the 1 s interval, the VM is
able to retrieve the network packet and send out a response.
Below 80 pages, ICMP requests will queue up, but will still
trigger a response if the footprint is increased again.

To reduce the footprint down to 1 page, full virtualization
using QEMU [32] was used to keep the VM functional,
though it appeared non-responsive. Increasing the footprint
would make the VM usable again. We suspect there was
a deadlock in the page fault handling with KVM hardware-
assisted virtualization since handling a page fault can trigger
more page faults. With full virtualization, the recursive
triggering of page faults would still succeed.

VII. RELATED WORK

Distributed Shared Memory (DSM) Some of the earliest
implementations of shared memory were found in DSM
hardware-based systems. Due to the high cost of such sys-
tems, many software-based DSM systems were proposed [8],
[9], [10]. They provide a single address space, like hardware
DSM systems, but added protocols for sharing and inval-
idation into the OS. Network and coordination overheads
posed a problem for the design and performance of these
protocols. An optimization to DSM that avoids the high
overhead from global coherency traffic is to split a global
coherency domain into partitions. These systems, known as
PGAS systems, allow for the existence of multiple, separate
key domains [43], [44]. PGAS approaches, however, require
modifying application code, and hence have limited appli-
cability to cloud settings.

Single System Images (SSI) SSI implementations provide
the abstraction of a machine comprised of resources from
many nodes [11]. They require heavyweight OS modifica-
tions and implement DSM to provide a single address space
with coherency guarantees. Linux SSI implementations [45]
run individual processes, so they don’t provide the trans-
parency benefits of VMs as used in cloud computing today.
They are also incompatible with current Linux kernels.

Remote-backed swap space The transparent use of remote
memory by unmodified applications can be realized using a
custom kernel module for a block device backed by memory.
The device is then configured as the swap device [22], [27].
The design space is broad, with works supporting VMs [27],
containers [22], and utilizing a variety of technologies like
Ethernet [27] and RDMA networks [22]. As described
earlier, swap-based approaches to memory disaggregation
cannot provide full memory disaggregation like FluidMem.

System resource disaggregation Rack-scale memory dis-
aggregation approaches include hardware prototypes [17],
a Xen hypervisor-based implementation of remote pag-
ing [46], and a new kernel [47] that implements a memory
transfer service for system resource disaggregation. All of
these require major changes to existing cloud hardware
or software stacks. Like FluidMem, dReDBox [17] uses
memory hotplug to add additional memory, but does not
expose a mechanism to provide decreasing memory capac-
ity for full memory disaggregation. Remote swap devices

that implement memory disaggregation [21], [22] provide a
transparent way to add memory, but are not able to provide
native memory to benefit applications like MongoDB, nor
do they provide full memory disaggregation.

VM Ballooning A technique to dynamically balance
memory usage among virtual machines is using a balloon
driver [48]. This kernel module installed in the guest VM
coordinates with the hypervisor to either inflate or deflate
its memory allocations within the guest. Ballooning takes
a relatively long time to reclaim pages used within the
guest because they must be flushed to disk before they
can be reused. Other work has improved performance with
intelligent prefetching, cache replacement, and fair share
algorithms [49]. Ballooning approaches, however, require
explicit VM cooperation or modifying applications in the
VM, whereas FluidMem works with unmodified VMs.

Hypervisor paging Hypervisor paging allows the hypervi-
sor to directly swap out guest physical memory, guaranteeing
a set amount of memory to be reclaimed on short timescales.
As opposed to ballooning, hypervisor paging is done without
full information of pages used by the guest so the wrong
choices for reclaiming can be expensive. VSwapper [50]
modifies the hypervisor by adding the visibility necessary
to avoid common swap inefficiencies. Other work shows
swapping pages back in is expensive and moves pages
into a shared memory swap device on the host to reduce
overheads [51]. None of these techniques examine full
memory disaggregation like FluidMem. Other research [52]
modified the hypervisor to provide disaggregated memory.
The downsides with their method are the requirement of a
custom hypervisor and that their solution is in kernel space.

Live migration (LM) LM [53] can relocate an entire VM,
including its memory footprint, to another hypervisor. LM
and memory disaggregation are complementary since LM is
capable of moving execution and memory disaggregation
can offload memory from the hypervisor. The emulation
software QEMU provides a LM technique called post-copy
migration that uses userfaultfd [23]. In this way, a VM can
be migrated before all its memory pages have been copied.
When the VM starts on the remote host and accesses a page
left behind, the page fault is caught by userfaultfd and the
missing page is retrieved over the network. Unlike QEMU,
FluidMem was designed for full memory disaggregation.

VIII. CONCLUSION

This paper has presented and motivated a novel solution
for software-based full memory disaggregation in virtualized
cloud computing environments. Our technique, called Fluid-
Mem, achieves full memory disaggregation by enabling any
page of a VM to be moved to remote memory. Importantly,
full memory disaggregation is enabled without any support
of the guest VM. Combined, these properties ensure any
page within a VM can be stored or serviced anywhere within

the datacenter. Our scheme allows the memory footprint of a
VM to seamlessly expand across multiple machines and even
enables a provider to shrink the memory footprint of a given
VM to near zero on a server. As opposed to swap-based
memory disaggregation techniques, FluidMem makes novel
use of the userfaultfd page fault handler to efficiently and
flexibly enable full memory disaggregation. The FluidMem
implementation and its optimizations were presented with
a detailed investigation of page fault latency. Evaluations
on applications Graph500 and MongoDB demonstrate that
FluidMem outperforms the swap-based alternatives used by
existing memory disaggregation research.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation (NSF) under CNS grant 1337399
and CAREER award 1652698. Support was also provided
through the 2019 Research Fund (1.190149.01) of UNIST.
Finally, we would like the thank William Mortl, Kannan
Subramanian, and Daniel Zurawski for their FluidMem code
and testing contributions.

REFERENCES

[1] R. Luo et al., “SOAPdenovo2: an empirically improved
memory-efficient short-read de novo assembler,” Giga-
Science, vol. 1, no. 1, p. 18, 2012.

[2] D. R. Zerbino and E. Birney, “Velvet: algorithms for de novo
short read assembly using de Bruijn graphs,” Genome Res.,
vol. 18, no. 5, pp. 821–829, May 2008.

[3] F. Färber et al., “SAP HANA Database: Data Management
for Modern Business Applications,” SIGMOD Rec., vol. 40,
no. 4, pp. 45–51, Jan. 2012.

[4] “MongoDB,” https://www.mongodb.com/.

[5] M. Zaharia et al., “Resilient Distributed Datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Pre-
sented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). San Jose,
CA: USENIX, 2012, pp. 15–28.

[6] D. E. Comer and J. Griffioen, “A new design for distributed
systems: The remote memory model,” in Proceedings of the
Summer 1990 USENIX Conference, June 1990.

[7] A. Samih et al., “Evaluating Dynamics and Bottlenecks of
Memory Collaboration in Cluster Systems,” in Proceedings of
the 2012 12th IEEE/ACM International Symposium on Clus-
ter, Cloud and Grid Computing (Ccgrid 2012). Washington,
DC, USA: IEEE Computer Society, 2012, pp. 107–114.

[8] J. K. Bennett, J. B. Carter, and W. Zwaenepoel, “Munin:
Distributed shared memory based on type-specific memory
coherence,” in Proceedings of the Second ACM SIGPLAN
Symposium on Principles & Practice of Parallel Program-
ming, ser. PPOPP ’90. New York, NY, USA: ACM, 1990,
pp. 168–176.

[9] B. D. Fleisch, R. L. Hyde, and N. C. Juul, “Mirage+: A
Kernel Implementation of Distributed Shared Memory on
a Network of Personal Computers,” Softw. Pract. Exper.,
vol. 24, no. 10, pp. 887–909, Oct. 1994. [Online]. Available:
http://dx.doi.org/10.1002/spe.4380241003

[10] P. Souto and E. W. Stark, “A Distributed Shared Memory
Facility for FreeBSD,” in Proceedings of the Annual Con-
ference on USENIX Annual Technical Conference, ser. ATEC
’97. Berkeley, CA, USA: USENIX Association, 1997, p. 11.

[11] C. Morin, P. Gallard, R. Lottiaux, and G. Vallée, “Towards
an efficient single system image cluster operating system,”
Future Generation Computer Systems, vol. 20, no. 4, pp. 505–
521, 2004.

[12] Z. Ma, Z. Sheng, and L. Gu, “DVM: A Big Virtual Machine
for Cloud Computing,” IEEE Transactions on Computers,
vol. 63, no. 9, pp. 2245–2258, Sept 2014.

[13] A. Dragojević et al., “FaRM: Fast remote memory,” in
Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation, NSDI, vol. 14, 2014.

[14] J. Ousterhout et al., “The RAMCloud Storage System,” ACM
Trans. Comput. Syst., vol. 33, no. 3, pp. 7:1–7:55, Aug. 2015.

[15] C. Mitchell, Y. Geng, and J. Li, “Using one-sided RDMA
reads to build a fast, CPU-efficient key-value store,” in
Presented as part of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13). San Jose, CA: USENIX,
2013, pp. 103–114.

[16] P. Costa, H. Ballani, and D. Narayanan, “Rethinking the
Network Stack for Rack-scale Computers,” in Proceedings
of the 6th USENIX Conference on Hot Topics in Cloud
Computing, ser. HotCloud’14. Berkeley, CA, USA: USENIX
Association, 2014, p. 12.

[17] M. Bielski et al., “dReDBox: Materializing a full-stack rack-
scale system prototype of a next-generation disaggregated
datacenter,” in 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2018, pp. 1093–1098.

[18] H. Volos et al., “Memory-oriented distributed computing at
rack scale,” in Proceedings of the ACM Symposium on Cloud
Computing, ser. SoCC ’18. New York, NY, USA: ACM,
2018, p. 529.

[19] K. Lim et al., “Disaggregated Memory for Expansion and
Sharing in Blade Servers,” SIGARCH Comput. Archit. News,
vol. 37, no. 3, pp. 267–278, Jun. 2009.

[20] M. K. Aguilera et al., “Remote Memory in the Age of
Fast Networks,” in Proceedings of the 2017 Symposium
on Cloud Computing, ser. SoCC ’17. New York, NY,
USA: ACM, 2017, pp. 121–127. [Online]. Available:
http://doi.acm.org/10.1145/3127479.3131612

[21] P. X. Gao et al., “Network Requirements for Resource Disag-
gregation,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16). GA: USENIX
Association, 2016, pp. 249–264.

https://www.mongodb.com/
http://dx.doi.org/10.1002/spe.4380241003
http://doi.acm.org/10.1145/3127479.3131612

[22] J. Gu et al., “Efficient Memory Disaggregation with Infin-
iswap,” in 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17). Boston, MA:
USENIX Association, 2017, pp. 649–667.

[23] “Userfaultfd Kernel Documentation,” https://www.kernel.org/
doc/html/latest/admin-guide/mm/userfaultfd.html.

[24] “NVM Express over Fabrics,” https://nvmexpress.org/.

[25] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang,
“Introducing the Graph 500,” in Cray User’s Group, 2010.

[26] “FluidMem,” https://github.com/blakecaldwell/fluidmem.

[27] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel, Nswap:
A Network Swapping Module for Linux Clusters. Berlin,
Germany: Springer Berlin Heidelberg, 2003, pp. 1160–1169.

[28] A. Papagiannis et al., “An Efficient Memory-Mapped Key-
Value Store for Flash Storage,” in Proceedings of the ACM
Symposium on Cloud Computing, ser. SoCC ’18. New York,
NY, USA: ACM, 2018, pp. 490–502.

[29] F. Manco et al., “My VM is lighter (and safer) than your con-
tainer,” in Proceedings of the 26th Symposium on Operating
Systems Principles, ser. SOSP ’17. New York, NY, USA:
ACM, 2017, pp. 218–233.

[30] “Firecracker,” https://firecracker-microvm.github.io.

[31] “Firecracker Production Host Setup Recommendations,”
https://github.com/firecracker-microvm/firecracker/blob/
master/docs/prod-host-setup.md.

[32] “QEMU,” http://www.qemu.org.

[33] D. Ongaro et al., “Fast Crash Recovery in RAMCloud,”
in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, ser. SOSP ’11. New York,
NY, USA: ACM, 2011, pp. 29–41.

[34] “Memcached,” http://memcached.org.

[35] P. Hunt et al., “Zookeeper: Wait-free coordination for
internet-scale systems,” in Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference, ser.
USENIXATC’10. Berkeley, CA, USA: USENIX Associa-
tion, 2010, p. 11.

[36] B. Caldwell, Y. Im, S. Ha, R. Han, and E. Keller,
“Fluidmem: Memory as a service for the datacenter,”
CoRR, vol. abs/1707.07780, 2017. [Online]. Available:
http://arxiv.org/abs/1707.07780

[37] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA
efficiently for key-value services,” SIGCOMM Comput. Com-
mun. Rev., vol. 44, no. 4, pp. 295–306, Aug. 2014.

[38] “Accelio based network block device,” https://github.com/
accelio/NBDX/.

[39] J. Yang and J. Seymour, “Pmbench: A Micro-Benchmark
for Profiling Paging Performance on a System with Low-
Latency SSDs,” in Information Technology-New Generations.
Springer, 2018, pp. 627–633.

[40] “Persistent Memory Programming,” https://pmem.io/.

[41] A. Buluç and K. Madduri, “Parallel Breadth-first Search
on Distributed Memory Systems,” in Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, p. 65.

[42] B. F. Cooper et al., “Benchmarking cloud serving systems
with YCSB,” in Proceedings of the 1st ACM Symposium on
Cloud Computing, ser. SoCC ’10. New York, NY, USA:
ACM, 2010, pp. 143–154.

[43] P. Charles et al., “X10: An object-oriented approach to non-
uniform cluster computing,” SIGPLAN Not., vol. 40, no. 10,
pp. 519–538, Oct. 2005.

[44] J. Nelson et al., “Latency-tolerant Software Distributed
Shared Memory,” in Proceedings of the 2015 USENIX Con-
ference on Usenix Annual Technical Conference, ser. USENIX
ATC ’15. Berkeley, CA, USA: USENIX Association, 2015,
pp. 291–305.

[45] “Kerrighed,” http://www.kerrighed.org.

[46] K. Lim et al., “System-level Implications of Disaggregated
Memory,” in Proceedings of the 2012 IEEE 18th International
Symposium on High-Performance Computer Architecture,
ser. HPCA ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 1–12. [Online]. Available: http://dx.doi.
org/10.1109/HPCA.2012.6168955

[47] Y. Shan et al., “LegoOS: A Disseminated, Distributed OS
for Hardware Resource Disaggregation,” in 13th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 18). Carlsbad, CA: USENIX Association, 2018, pp.
69–87.

[48] C. A. Waldspurger, “Memory Resource Management in
VMware ESX Server,” SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, pp. 181–194, Dec. 2002. [Online]. Available:
http://doi.acm.org/10.1145/844128.844146

[49] J. Hwang et al., “Mortar: Filling the Gaps in Data Center
Memory,” SIGPLAN Not., vol. 49, no. 7, pp. 53–64,
Mar. 2014. [Online]. Available: http://doi.acm.org/10.1145/
2674025.2576203

[50] N. Amit, D. Tsafrir, and A. Schuster, “VSwapper: A Memory
Swapper for Virtualized Environments,” in Proceedings of
the 19th International Conference on Architectural Support
for Programming Languages and Operating Systems, ser.
ASPLOS ’14. New York, NY, USA: ACM, 2014, pp. 349–
366.

[51] Q. Zhang et al., “MemFlex: A Shared Memory Swapper for
High Performance VM Execution,” IEEE Transactions on
Computers, vol. 66, no. 9, pp. 1645–1652, Sep. 2017.

[52] K. Koh et al., “Disaggregated cloud memory with elas-
tic block management,” IEEE Transactions on Computers,
vol. 68, no. 1, pp. 39–52, 2019.

[53] C. Clark et al., “Live Migration of Virtual Machines,” in Pro-
ceedings of the 2nd Conference on Symposium on Networked
Systems Design & Implementation, ser. NSDI’05. Berkeley,
CA, USA: USENIX Association, 2005, pp. 273–286.

https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/userfaultfd.html
https://nvmexpress.org/
https://github.com/blakecaldwell/fluidmem
https://firecracker-microvm.github.io
https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/prod-host-setup.md
http://www.qemu.org
http://memcached.org
http://arxiv.org/abs/1707.07780
https://github.com/accelio/NBDX/
https://github.com/accelio/NBDX/
https://pmem.io/
http://www.kerrighed.org
http://dx.doi.org/10.1109/HPCA.2012.6168955
http://dx.doi.org/10.1109/HPCA.2012.6168955
http://doi.acm.org/10.1145/844128.844146
http://doi.acm.org/10.1145/2674025.2576203
http://doi.acm.org/10.1145/2674025.2576203

	Introduction
	Motivating Software-based Full Memory Disaggregation
	FluidMem Architecture
	Expanding To Remote Memory
	Fast Handling of Remote Page Faults
	User space page fault handler
	Optimizations to page fault handling

	Evaluation
	Test platform configuration
	Latency micro-benchmarks
	FluidMem optimizations
	Application Use Cases
	Graph500
	MongoDB

	Full memory disaggregation

	Related Work
	Conclusion
	References

